1
0
Weather_ESP/main/main.c
Christian Loch b12deb401c Imported Bosch BME280 driver
Added ESP-IDF example for I2C bus
2020-02-04 00:00:54 +01:00

375 lines
11 KiB
C

#include "freertos/FreeRTOS.h"
#include "esp_wifi.h"
#include "esp_system.h"
#include "esp_event.h"
#include "esp_event_loop.h"
#include "nvs_flash.h"
#include "driver/gpio.h"
#include "bme280.h"
#include "driver/i2c.h"
#define I2C_MASTER_TX_BUF_DISABLE 0 /*!< I2C master doesn't need buffer */
#define I2C_MASTER_RX_BUF_DISABLE 0 /*!< I2C master doesn't need buffer */
#define WRITE_BIT I2C_MASTER_WRITE /*!< I2C master write */
#define READ_BIT I2C_MASTER_READ /*!< I2C master read */
#define ACK_CHECK_EN 0x1 /*!< I2C master will check ack from slave*/
#define ACK_CHECK_DIS 0x0 /*!< I2C master will not check ack from slave */
#define ACK_VAL 0x0 /*!< I2C ack value */
#define NACK_VAL 0x1 /*!< I2C nack value */
static struct {
struct arg_int *port;
struct arg_int *freq;
struct arg_int *sda;
struct arg_int *scl;
struct arg_end *end;
} i2cconfig_args;
static struct {
struct arg_int *chip_address;
struct arg_int *register_address;
struct arg_int *data_length;
struct arg_end *end;
} i2cget_args;
static struct {
struct arg_int *chip_address;
struct arg_int *register_address;
struct arg_int *data;
struct arg_end *end;
} i2cset_args;
static int do_i2cget_cmd(int argc, char **argv)
{
int nerrors = arg_parse(argc, argv, (void **)&i2cget_args);
if (nerrors != 0) {
arg_print_errors(stderr, i2cget_args.end, argv[0]);
return 0;
}
/* Check chip address: "-c" option */
int chip_addr = i2cget_args.chip_address->ival[0];
/* Check register address: "-r" option */
int data_addr = -1;
if (i2cget_args.register_address->count) {
data_addr = i2cget_args.register_address->ival[0];
}
/* Check data length: "-l" option */
int len = 1;
if (i2cget_args.data_length->count) {
len = i2cget_args.data_length->ival[0];
}
uint8_t *data = malloc(len);
i2c_master_driver_initialize();
i2c_driver_install(i2c_port, I2C_MODE_MASTER, I2C_MASTER_RX_BUF_DISABLE, I2C_MASTER_TX_BUF_DISABLE, 0);
i2c_cmd_handle_t cmd = i2c_cmd_link_create();
i2c_master_start(cmd);
if (data_addr != -1) {
i2c_master_write_byte(cmd, chip_addr << 1 | WRITE_BIT, ACK_CHECK_EN);
i2c_master_write_byte(cmd, data_addr, ACK_CHECK_EN);
i2c_master_start(cmd);
}
i2c_master_write_byte(cmd, chip_addr << 1 | READ_BIT, ACK_CHECK_EN);
if (len > 1) {
i2c_master_read(cmd, data, len - 1, ACK_VAL);
}
i2c_master_read_byte(cmd, data + len - 1, NACK_VAL);
i2c_master_stop(cmd);
esp_err_t ret = i2c_master_cmd_begin(i2c_port, cmd, 1000 / portTICK_RATE_MS);
i2c_cmd_link_delete(cmd);
if (ret == ESP_OK) {
for (int i = 0; i < len; i++) {
printf("0x%02x ", data[i]);
if ((i + 1) % 16 == 0) {
printf("\r\n");
}
}
if (len % 16) {
printf("\r\n");
}
} else if (ret == ESP_ERR_TIMEOUT) {
ESP_LOGW(TAG, "Bus is busy");
} else {
ESP_LOGW(TAG, "Read failed");
}
free(data);
i2c_driver_delete(i2c_port);
return 0;
}
static int do_i2cset_cmd(int argc, char **argv)
{
int nerrors = arg_parse(argc, argv, (void **)&i2cset_args);
if (nerrors != 0) {
arg_print_errors(stderr, i2cset_args.end, argv[0]);
return 0;
}
/* Check chip address: "-c" option */
int chip_addr = i2cset_args.chip_address->ival[0];
/* Check register address: "-r" option */
int data_addr = 0;
if (i2cset_args.register_address->count) {
data_addr = i2cset_args.register_address->ival[0];
}
/* Check data: "-d" option */
int len = i2cset_args.data->count;
i2c_master_driver_initialize();
i2c_driver_install(i2c_port, I2C_MODE_MASTER, I2C_MASTER_RX_BUF_DISABLE, I2C_MASTER_TX_BUF_DISABLE, 0);
i2c_cmd_handle_t cmd = i2c_cmd_link_create();
i2c_master_start(cmd);
i2c_master_write_byte(cmd, chip_addr << 1 | WRITE_BIT, ACK_CHECK_EN);
if (i2cset_args.register_address->count) {
i2c_master_write_byte(cmd, data_addr, ACK_CHECK_EN);
}
for (int i = 0; i < len; i++) {
i2c_master_write_byte(cmd, i2cset_args.data->ival[i], ACK_CHECK_EN);
}
i2c_master_stop(cmd);
esp_err_t ret = i2c_master_cmd_begin(i2c_port, cmd, 1000 / portTICK_RATE_MS);
i2c_cmd_link_delete(cmd);
if (ret == ESP_OK) {
ESP_LOGI(TAG, "Write OK");
} else if (ret == ESP_ERR_TIMEOUT) {
ESP_LOGW(TAG, "Bus is busy");
} else {
ESP_LOGW(TAG, "Write Failed");
}
i2c_driver_delete(i2c_port);
return 0;
}
static int do_i2cconfig_cmd(int argc, char **argv)
{
int nerrors = arg_parse(argc, argv, (void **)&i2cconfig_args);
if (nerrors != 0) {
arg_print_errors(stderr, i2cconfig_args.end, argv[0]);
return 0;
}
/* Check "--port" option */
if (i2cconfig_args.port->count) {
if (i2c_get_port(i2cconfig_args.port->ival[0], &i2c_port) != ESP_OK) {
return 1;
}
}
/* Check "--freq" option */
if (i2cconfig_args.freq->count) {
i2c_frequency = i2cconfig_args.freq->ival[0];
}
/* Check "--sda" option */
i2c_gpio_sda = i2cconfig_args.sda->ival[0];
/* Check "--scl" option */
i2c_gpio_scl = i2cconfig_args.scl->ival[0];
return 0;
}
int fd;
void user_delay_ms(uint32_t period);
void print_sensor_data(struct bme280_data *comp_data);
int8_t user_i2c_read(uint8_t id, uint8_t reg_addr, uint8_t *data, uint16_t len);
int8_t user_i2c_write(uint8_t id, uint8_t reg_addr, uint8_t *data, uint16_t len);
int8_t stream_sensor_data_forced_mode(struct bme280_dev *dev);
/*!
* @brief This function reading the sensor's registers through I2C bus.
*/
int8_t user_i2c_read(uint8_t id, uint8_t reg_addr, uint8_t *data, uint16_t len)
{
write(fd, &reg_addr, 1);
read(fd, data, len);
return 0;
}
/*!
* @brief This function provides the delay for required time (Microseconds) as per the input provided in some of the
* APIs
*/
void user_delay_ms(uint32_t period)
{
/* Milliseconds convert to microseconds */
usleep(period * 1000);
}
/*!
* @brief This function for writing the sensor's registers through I2C bus.
*/
int8_t user_i2c_write(uint8_t id, uint8_t reg_addr, uint8_t *data, uint16_t len)
{
int8_t *buf;
buf = malloc(len + 1);
buf[0] = reg_addr;
memcpy(buf + 1, data, len);
if (write(fd, buf, len + 1) < len)
{
return BME280_E_COMM_FAIL;
}
free(buf);
return BME280_OK;
}
/*!
* @brief This API used to print the sensor temperature, pressure and humidity data.
*/
void print_sensor_data(struct bme280_data *comp_data)
{
float temp, press, hum;
#ifdef BME280_FLOAT_ENABLE
temp = comp_data->temperature;
press = 0.01 * comp_data->pressure;
hum = comp_data->humidity;
#else
#ifdef BME280_64BIT_ENABLE
temp = 0.01f * comp_data->temperature;
press = 0.0001f * comp_data->pressure;
hum = 1.0f / 1024.0f * comp_data->humidity;
#else
temp = 0.01f * comp_data->temperature;
press = 0.01f * comp_data->pressure;
hum = 1.0f / 1024.0f * comp_data->humidity;
#endif
#endif
printf("%0.2lf deg C, %0.2lf hPa, %0.2lf%%\n", temp, press, hum);
}
/*!
* @brief This API reads the sensor temperature, pressure and humidity data in forced mode.
*/
int8_t stream_sensor_data_forced_mode(struct bme280_dev *dev)
{
/* Variable to define the result */
int8_t rslt = BME280_OK;
/* Variable to define the selecting sensors */
uint8_t settings_sel = 0;
/* Variable to store minimum wait time between consecutive measurement in force mode */
uint32_t req_delay;
/* Structure to get the pressure, temperature and humidity values */
struct bme280_data comp_data;
/* Recommended mode of operation: Indoor navigation */
dev->settings.osr_h = BME280_OVERSAMPLING_1X;
dev->settings.osr_p = BME280_OVERSAMPLING_16X;
dev->settings.osr_t = BME280_OVERSAMPLING_2X;
dev->settings.filter = BME280_FILTER_COEFF_16;
settings_sel = BME280_OSR_PRESS_SEL | BME280_OSR_TEMP_SEL | BME280_OSR_HUM_SEL | BME280_FILTER_SEL;
/* Set the sensor settings */
rslt = bme280_set_sensor_settings(settings_sel, dev);
if (rslt != BME280_OK)
{
fprintf(stderr, "Failed to set sensor settings (code %+d).", rslt);
return rslt;
}
printf("Temperature, Pressure, Humidity\n");
/*Calculate the minimum delay required between consecutive measurement based upon the sensor enabled
* and the oversampling configuration. */
req_delay = bme280_cal_meas_delay(&dev->settings);
/* Continuously stream sensor data */
while (1)
{
/* Set the sensor to forced mode */
rslt = bme280_set_sensor_mode(BME280_FORCED_MODE, dev);
if (rslt != BME280_OK)
{
fprintf(stderr, "Failed to set sensor mode (code %+d).", rslt);
break;
}
/* Wait for the measurement to complete and print data */
dev->delay_ms(req_delay);
rslt = bme280_get_sensor_data(BME280_ALL, &comp_data, dev);
if (rslt != BME280_OK)
{
fprintf(stderr, "Failed to get sensor data (code %+d).", rslt);
break;
}
print_sensor_data(&comp_data);
}
return rslt;
}
static esp_err_t i2c_master_driver_initialize()
{
i2c_config_t conf = {
.mode = I2C_MODE_MASTER,
.sda_io_num = i2c_gpio_sda,
.sda_pullup_en = GPIO_PULLUP_ENABLE,
.scl_io_num = i2c_gpio_scl,
.scl_pullup_en = GPIO_PULLUP_ENABLE,
.master.clk_speed = i2c_frequency
};
return i2c_param_config(i2c_port, &conf);
}
void app_main(void)
{
struct bme280_dev dev;
/* Variable to define the result */
int8_t rslt = BME280_OK;
/* Make sure to select BME280_I2C_ADDR_PRIM or BME280_I2C_ADDR_SEC as needed */
dev.dev_id = BME280_I2C_ADDR_PRIM;
/* dev.dev_id = BME280_I2C_ADDR_SEC; */
dev.intf = BME280_I2C_INTF;
dev.read = user_i2c_read;
dev.write = user_i2c_write;
dev.delay_ms = user_delay_ms;
if ((fd = open(argv[1], O_RDWR)) < 0)
{
fprintf(stderr, "Failed to open the i2c bus %s\n", argv[1]);
exit(1);
}
#ifdef __KERNEL__
if (ioctl(fd, I2C_SLAVE, dev.dev_id) < 0)
{
fprintf(stderr, "Failed to acquire bus access and/or talk to slave.\n");
exit(1);
}
#endif
/* Initialize the bme280 */
rslt = bme280_init(&dev);
if (rslt != BME280_OK)
{
fprintf(stderr, "Failed to initialize the device (code %+d).\n", rslt);
exit(1);
}
rslt = stream_sensor_data_forced_mode(&dev);
if (rslt != BME280_OK)
{
fprintf(stderr, "Failed to stream sensor data (code %+d).\n", rslt);
exit(1);
}
return ;
}