Repo for ESP32 Weather Station Development
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

375 lines
11KB

  1. #include "freertos/FreeRTOS.h"
  2. #include "esp_wifi.h"
  3. #include "esp_system.h"
  4. #include "esp_event.h"
  5. #include "esp_event_loop.h"
  6. #include "nvs_flash.h"
  7. #include "driver/gpio.h"
  8. #include "bme280.h"
  9. #include "driver/i2c.h"
  10. #define I2C_MASTER_TX_BUF_DISABLE 0 /*!< I2C master doesn't need buffer */
  11. #define I2C_MASTER_RX_BUF_DISABLE 0 /*!< I2C master doesn't need buffer */
  12. #define WRITE_BIT I2C_MASTER_WRITE /*!< I2C master write */
  13. #define READ_BIT I2C_MASTER_READ /*!< I2C master read */
  14. #define ACK_CHECK_EN 0x1 /*!< I2C master will check ack from slave*/
  15. #define ACK_CHECK_DIS 0x0 /*!< I2C master will not check ack from slave */
  16. #define ACK_VAL 0x0 /*!< I2C ack value */
  17. #define NACK_VAL 0x1 /*!< I2C nack value */
  18. static struct {
  19. struct arg_int *port;
  20. struct arg_int *freq;
  21. struct arg_int *sda;
  22. struct arg_int *scl;
  23. struct arg_end *end;
  24. } i2cconfig_args;
  25. static struct {
  26. struct arg_int *chip_address;
  27. struct arg_int *register_address;
  28. struct arg_int *data_length;
  29. struct arg_end *end;
  30. } i2cget_args;
  31. static struct {
  32. struct arg_int *chip_address;
  33. struct arg_int *register_address;
  34. struct arg_int *data;
  35. struct arg_end *end;
  36. } i2cset_args;
  37. static int do_i2cget_cmd(int argc, char **argv)
  38. {
  39. int nerrors = arg_parse(argc, argv, (void **)&i2cget_args);
  40. if (nerrors != 0) {
  41. arg_print_errors(stderr, i2cget_args.end, argv[0]);
  42. return 0;
  43. }
  44. /* Check chip address: "-c" option */
  45. int chip_addr = i2cget_args.chip_address->ival[0];
  46. /* Check register address: "-r" option */
  47. int data_addr = -1;
  48. if (i2cget_args.register_address->count) {
  49. data_addr = i2cget_args.register_address->ival[0];
  50. }
  51. /* Check data length: "-l" option */
  52. int len = 1;
  53. if (i2cget_args.data_length->count) {
  54. len = i2cget_args.data_length->ival[0];
  55. }
  56. uint8_t *data = malloc(len);
  57. i2c_master_driver_initialize();
  58. i2c_driver_install(i2c_port, I2C_MODE_MASTER, I2C_MASTER_RX_BUF_DISABLE, I2C_MASTER_TX_BUF_DISABLE, 0);
  59. i2c_cmd_handle_t cmd = i2c_cmd_link_create();
  60. i2c_master_start(cmd);
  61. if (data_addr != -1) {
  62. i2c_master_write_byte(cmd, chip_addr << 1 | WRITE_BIT, ACK_CHECK_EN);
  63. i2c_master_write_byte(cmd, data_addr, ACK_CHECK_EN);
  64. i2c_master_start(cmd);
  65. }
  66. i2c_master_write_byte(cmd, chip_addr << 1 | READ_BIT, ACK_CHECK_EN);
  67. if (len > 1) {
  68. i2c_master_read(cmd, data, len - 1, ACK_VAL);
  69. }
  70. i2c_master_read_byte(cmd, data + len - 1, NACK_VAL);
  71. i2c_master_stop(cmd);
  72. esp_err_t ret = i2c_master_cmd_begin(i2c_port, cmd, 1000 / portTICK_RATE_MS);
  73. i2c_cmd_link_delete(cmd);
  74. if (ret == ESP_OK) {
  75. for (int i = 0; i < len; i++) {
  76. printf("0x%02x ", data[i]);
  77. if ((i + 1) % 16 == 0) {
  78. printf("\r\n");
  79. }
  80. }
  81. if (len % 16) {
  82. printf("\r\n");
  83. }
  84. } else if (ret == ESP_ERR_TIMEOUT) {
  85. ESP_LOGW(TAG, "Bus is busy");
  86. } else {
  87. ESP_LOGW(TAG, "Read failed");
  88. }
  89. free(data);
  90. i2c_driver_delete(i2c_port);
  91. return 0;
  92. }
  93. static int do_i2cset_cmd(int argc, char **argv)
  94. {
  95. int nerrors = arg_parse(argc, argv, (void **)&i2cset_args);
  96. if (nerrors != 0) {
  97. arg_print_errors(stderr, i2cset_args.end, argv[0]);
  98. return 0;
  99. }
  100. /* Check chip address: "-c" option */
  101. int chip_addr = i2cset_args.chip_address->ival[0];
  102. /* Check register address: "-r" option */
  103. int data_addr = 0;
  104. if (i2cset_args.register_address->count) {
  105. data_addr = i2cset_args.register_address->ival[0];
  106. }
  107. /* Check data: "-d" option */
  108. int len = i2cset_args.data->count;
  109. i2c_master_driver_initialize();
  110. i2c_driver_install(i2c_port, I2C_MODE_MASTER, I2C_MASTER_RX_BUF_DISABLE, I2C_MASTER_TX_BUF_DISABLE, 0);
  111. i2c_cmd_handle_t cmd = i2c_cmd_link_create();
  112. i2c_master_start(cmd);
  113. i2c_master_write_byte(cmd, chip_addr << 1 | WRITE_BIT, ACK_CHECK_EN);
  114. if (i2cset_args.register_address->count) {
  115. i2c_master_write_byte(cmd, data_addr, ACK_CHECK_EN);
  116. }
  117. for (int i = 0; i < len; i++) {
  118. i2c_master_write_byte(cmd, i2cset_args.data->ival[i], ACK_CHECK_EN);
  119. }
  120. i2c_master_stop(cmd);
  121. esp_err_t ret = i2c_master_cmd_begin(i2c_port, cmd, 1000 / portTICK_RATE_MS);
  122. i2c_cmd_link_delete(cmd);
  123. if (ret == ESP_OK) {
  124. ESP_LOGI(TAG, "Write OK");
  125. } else if (ret == ESP_ERR_TIMEOUT) {
  126. ESP_LOGW(TAG, "Bus is busy");
  127. } else {
  128. ESP_LOGW(TAG, "Write Failed");
  129. }
  130. i2c_driver_delete(i2c_port);
  131. return 0;
  132. }
  133. static int do_i2cconfig_cmd(int argc, char **argv)
  134. {
  135. int nerrors = arg_parse(argc, argv, (void **)&i2cconfig_args);
  136. if (nerrors != 0) {
  137. arg_print_errors(stderr, i2cconfig_args.end, argv[0]);
  138. return 0;
  139. }
  140. /* Check "--port" option */
  141. if (i2cconfig_args.port->count) {
  142. if (i2c_get_port(i2cconfig_args.port->ival[0], &i2c_port) != ESP_OK) {
  143. return 1;
  144. }
  145. }
  146. /* Check "--freq" option */
  147. if (i2cconfig_args.freq->count) {
  148. i2c_frequency = i2cconfig_args.freq->ival[0];
  149. }
  150. /* Check "--sda" option */
  151. i2c_gpio_sda = i2cconfig_args.sda->ival[0];
  152. /* Check "--scl" option */
  153. i2c_gpio_scl = i2cconfig_args.scl->ival[0];
  154. return 0;
  155. }
  156. int fd;
  157. void user_delay_ms(uint32_t period);
  158. void print_sensor_data(struct bme280_data *comp_data);
  159. int8_t user_i2c_read(uint8_t id, uint8_t reg_addr, uint8_t *data, uint16_t len);
  160. int8_t user_i2c_write(uint8_t id, uint8_t reg_addr, uint8_t *data, uint16_t len);
  161. int8_t stream_sensor_data_forced_mode(struct bme280_dev *dev);
  162. /*!
  163. * @brief This function reading the sensor's registers through I2C bus.
  164. */
  165. int8_t user_i2c_read(uint8_t id, uint8_t reg_addr, uint8_t *data, uint16_t len)
  166. {
  167. write(fd, &reg_addr, 1);
  168. read(fd, data, len);
  169. return 0;
  170. }
  171. /*!
  172. * @brief This function provides the delay for required time (Microseconds) as per the input provided in some of the
  173. * APIs
  174. */
  175. void user_delay_ms(uint32_t period)
  176. {
  177. /* Milliseconds convert to microseconds */
  178. usleep(period * 1000);
  179. }
  180. /*!
  181. * @brief This function for writing the sensor's registers through I2C bus.
  182. */
  183. int8_t user_i2c_write(uint8_t id, uint8_t reg_addr, uint8_t *data, uint16_t len)
  184. {
  185. int8_t *buf;
  186. buf = malloc(len + 1);
  187. buf[0] = reg_addr;
  188. memcpy(buf + 1, data, len);
  189. if (write(fd, buf, len + 1) < len)
  190. {
  191. return BME280_E_COMM_FAIL;
  192. }
  193. free(buf);
  194. return BME280_OK;
  195. }
  196. /*!
  197. * @brief This API used to print the sensor temperature, pressure and humidity data.
  198. */
  199. void print_sensor_data(struct bme280_data *comp_data)
  200. {
  201. float temp, press, hum;
  202. #ifdef BME280_FLOAT_ENABLE
  203. temp = comp_data->temperature;
  204. press = 0.01 * comp_data->pressure;
  205. hum = comp_data->humidity;
  206. #else
  207. #ifdef BME280_64BIT_ENABLE
  208. temp = 0.01f * comp_data->temperature;
  209. press = 0.0001f * comp_data->pressure;
  210. hum = 1.0f / 1024.0f * comp_data->humidity;
  211. #else
  212. temp = 0.01f * comp_data->temperature;
  213. press = 0.01f * comp_data->pressure;
  214. hum = 1.0f / 1024.0f * comp_data->humidity;
  215. #endif
  216. #endif
  217. printf("%0.2lf deg C, %0.2lf hPa, %0.2lf%%\n", temp, press, hum);
  218. }
  219. /*!
  220. * @brief This API reads the sensor temperature, pressure and humidity data in forced mode.
  221. */
  222. int8_t stream_sensor_data_forced_mode(struct bme280_dev *dev)
  223. {
  224. /* Variable to define the result */
  225. int8_t rslt = BME280_OK;
  226. /* Variable to define the selecting sensors */
  227. uint8_t settings_sel = 0;
  228. /* Variable to store minimum wait time between consecutive measurement in force mode */
  229. uint32_t req_delay;
  230. /* Structure to get the pressure, temperature and humidity values */
  231. struct bme280_data comp_data;
  232. /* Recommended mode of operation: Indoor navigation */
  233. dev->settings.osr_h = BME280_OVERSAMPLING_1X;
  234. dev->settings.osr_p = BME280_OVERSAMPLING_16X;
  235. dev->settings.osr_t = BME280_OVERSAMPLING_2X;
  236. dev->settings.filter = BME280_FILTER_COEFF_16;
  237. settings_sel = BME280_OSR_PRESS_SEL | BME280_OSR_TEMP_SEL | BME280_OSR_HUM_SEL | BME280_FILTER_SEL;
  238. /* Set the sensor settings */
  239. rslt = bme280_set_sensor_settings(settings_sel, dev);
  240. if (rslt != BME280_OK)
  241. {
  242. fprintf(stderr, "Failed to set sensor settings (code %+d).", rslt);
  243. return rslt;
  244. }
  245. printf("Temperature, Pressure, Humidity\n");
  246. /*Calculate the minimum delay required between consecutive measurement based upon the sensor enabled
  247. * and the oversampling configuration. */
  248. req_delay = bme280_cal_meas_delay(&dev->settings);
  249. /* Continuously stream sensor data */
  250. while (1)
  251. {
  252. /* Set the sensor to forced mode */
  253. rslt = bme280_set_sensor_mode(BME280_FORCED_MODE, dev);
  254. if (rslt != BME280_OK)
  255. {
  256. fprintf(stderr, "Failed to set sensor mode (code %+d).", rslt);
  257. break;
  258. }
  259. /* Wait for the measurement to complete and print data */
  260. dev->delay_ms(req_delay);
  261. rslt = bme280_get_sensor_data(BME280_ALL, &comp_data, dev);
  262. if (rslt != BME280_OK)
  263. {
  264. fprintf(stderr, "Failed to get sensor data (code %+d).", rslt);
  265. break;
  266. }
  267. print_sensor_data(&comp_data);
  268. }
  269. return rslt;
  270. }
  271. static esp_err_t i2c_master_driver_initialize()
  272. {
  273. i2c_config_t conf = {
  274. .mode = I2C_MODE_MASTER,
  275. .sda_io_num = i2c_gpio_sda,
  276. .sda_pullup_en = GPIO_PULLUP_ENABLE,
  277. .scl_io_num = i2c_gpio_scl,
  278. .scl_pullup_en = GPIO_PULLUP_ENABLE,
  279. .master.clk_speed = i2c_frequency
  280. };
  281. return i2c_param_config(i2c_port, &conf);
  282. }
  283. void app_main(void)
  284. {
  285. struct bme280_dev dev;
  286. /* Variable to define the result */
  287. int8_t rslt = BME280_OK;
  288. /* Make sure to select BME280_I2C_ADDR_PRIM or BME280_I2C_ADDR_SEC as needed */
  289. dev.dev_id = BME280_I2C_ADDR_PRIM;
  290. /* dev.dev_id = BME280_I2C_ADDR_SEC; */
  291. dev.intf = BME280_I2C_INTF;
  292. dev.read = user_i2c_read;
  293. dev.write = user_i2c_write;
  294. dev.delay_ms = user_delay_ms;
  295. if ((fd = open(argv[1], O_RDWR)) < 0)
  296. {
  297. fprintf(stderr, "Failed to open the i2c bus %s\n", argv[1]);
  298. exit(1);
  299. }
  300. #ifdef __KERNEL__
  301. if (ioctl(fd, I2C_SLAVE, dev.dev_id) < 0)
  302. {
  303. fprintf(stderr, "Failed to acquire bus access and/or talk to slave.\n");
  304. exit(1);
  305. }
  306. #endif
  307. /* Initialize the bme280 */
  308. rslt = bme280_init(&dev);
  309. if (rslt != BME280_OK)
  310. {
  311. fprintf(stderr, "Failed to initialize the device (code %+d).\n", rslt);
  312. exit(1);
  313. }
  314. rslt = stream_sensor_data_forced_mode(&dev);
  315. if (rslt != BME280_OK)
  316. {
  317. fprintf(stderr, "Failed to stream sensor data (code %+d).\n", rslt);
  318. exit(1);
  319. }
  320. return ;
  321. }