#include "freertos/FreeRTOS.h" #include "esp_wifi.h" #include "esp_system.h" #include "esp_event.h" #include "esp_event_loop.h" #include "nvs_flash.h" #include "driver/gpio.h" #include "bme280.h" #include "driver/i2c.h" #define I2C_MASTER_TX_BUF_DISABLE 0 /*!< I2C master doesn't need buffer */ #define I2C_MASTER_RX_BUF_DISABLE 0 /*!< I2C master doesn't need buffer */ #define WRITE_BIT I2C_MASTER_WRITE /*!< I2C master write */ #define READ_BIT I2C_MASTER_READ /*!< I2C master read */ #define ACK_CHECK_EN 0x1 /*!< I2C master will check ack from slave*/ #define ACK_CHECK_DIS 0x0 /*!< I2C master will not check ack from slave */ #define ACK_VAL 0x0 /*!< I2C ack value */ #define NACK_VAL 0x1 /*!< I2C nack value */ static struct { struct arg_int *port; struct arg_int *freq; struct arg_int *sda; struct arg_int *scl; struct arg_end *end; } i2cconfig_args; static struct { struct arg_int *chip_address; struct arg_int *register_address; struct arg_int *data_length; struct arg_end *end; } i2cget_args; static struct { struct arg_int *chip_address; struct arg_int *register_address; struct arg_int *data; struct arg_end *end; } i2cset_args; static int do_i2cget_cmd(int argc, char **argv) { int nerrors = arg_parse(argc, argv, (void **)&i2cget_args); if (nerrors != 0) { arg_print_errors(stderr, i2cget_args.end, argv[0]); return 0; } /* Check chip address: "-c" option */ int chip_addr = i2cget_args.chip_address->ival[0]; /* Check register address: "-r" option */ int data_addr = -1; if (i2cget_args.register_address->count) { data_addr = i2cget_args.register_address->ival[0]; } /* Check data length: "-l" option */ int len = 1; if (i2cget_args.data_length->count) { len = i2cget_args.data_length->ival[0]; } uint8_t *data = malloc(len); i2c_master_driver_initialize(); i2c_driver_install(i2c_port, I2C_MODE_MASTER, I2C_MASTER_RX_BUF_DISABLE, I2C_MASTER_TX_BUF_DISABLE, 0); i2c_cmd_handle_t cmd = i2c_cmd_link_create(); i2c_master_start(cmd); if (data_addr != -1) { i2c_master_write_byte(cmd, chip_addr << 1 | WRITE_BIT, ACK_CHECK_EN); i2c_master_write_byte(cmd, data_addr, ACK_CHECK_EN); i2c_master_start(cmd); } i2c_master_write_byte(cmd, chip_addr << 1 | READ_BIT, ACK_CHECK_EN); if (len > 1) { i2c_master_read(cmd, data, len - 1, ACK_VAL); } i2c_master_read_byte(cmd, data + len - 1, NACK_VAL); i2c_master_stop(cmd); esp_err_t ret = i2c_master_cmd_begin(i2c_port, cmd, 1000 / portTICK_RATE_MS); i2c_cmd_link_delete(cmd); if (ret == ESP_OK) { for (int i = 0; i < len; i++) { printf("0x%02x ", data[i]); if ((i + 1) % 16 == 0) { printf("\r\n"); } } if (len % 16) { printf("\r\n"); } } else if (ret == ESP_ERR_TIMEOUT) { ESP_LOGW(TAG, "Bus is busy"); } else { ESP_LOGW(TAG, "Read failed"); } free(data); i2c_driver_delete(i2c_port); return 0; } static int do_i2cset_cmd(int argc, char **argv) { int nerrors = arg_parse(argc, argv, (void **)&i2cset_args); if (nerrors != 0) { arg_print_errors(stderr, i2cset_args.end, argv[0]); return 0; } /* Check chip address: "-c" option */ int chip_addr = i2cset_args.chip_address->ival[0]; /* Check register address: "-r" option */ int data_addr = 0; if (i2cset_args.register_address->count) { data_addr = i2cset_args.register_address->ival[0]; } /* Check data: "-d" option */ int len = i2cset_args.data->count; i2c_master_driver_initialize(); i2c_driver_install(i2c_port, I2C_MODE_MASTER, I2C_MASTER_RX_BUF_DISABLE, I2C_MASTER_TX_BUF_DISABLE, 0); i2c_cmd_handle_t cmd = i2c_cmd_link_create(); i2c_master_start(cmd); i2c_master_write_byte(cmd, chip_addr << 1 | WRITE_BIT, ACK_CHECK_EN); if (i2cset_args.register_address->count) { i2c_master_write_byte(cmd, data_addr, ACK_CHECK_EN); } for (int i = 0; i < len; i++) { i2c_master_write_byte(cmd, i2cset_args.data->ival[i], ACK_CHECK_EN); } i2c_master_stop(cmd); esp_err_t ret = i2c_master_cmd_begin(i2c_port, cmd, 1000 / portTICK_RATE_MS); i2c_cmd_link_delete(cmd); if (ret == ESP_OK) { ESP_LOGI(TAG, "Write OK"); } else if (ret == ESP_ERR_TIMEOUT) { ESP_LOGW(TAG, "Bus is busy"); } else { ESP_LOGW(TAG, "Write Failed"); } i2c_driver_delete(i2c_port); return 0; } static int do_i2cconfig_cmd(int argc, char **argv) { int nerrors = arg_parse(argc, argv, (void **)&i2cconfig_args); if (nerrors != 0) { arg_print_errors(stderr, i2cconfig_args.end, argv[0]); return 0; } /* Check "--port" option */ if (i2cconfig_args.port->count) { if (i2c_get_port(i2cconfig_args.port->ival[0], &i2c_port) != ESP_OK) { return 1; } } /* Check "--freq" option */ if (i2cconfig_args.freq->count) { i2c_frequency = i2cconfig_args.freq->ival[0]; } /* Check "--sda" option */ i2c_gpio_sda = i2cconfig_args.sda->ival[0]; /* Check "--scl" option */ i2c_gpio_scl = i2cconfig_args.scl->ival[0]; return 0; } int fd; void user_delay_ms(uint32_t period); void print_sensor_data(struct bme280_data *comp_data); int8_t user_i2c_read(uint8_t id, uint8_t reg_addr, uint8_t *data, uint16_t len); int8_t user_i2c_write(uint8_t id, uint8_t reg_addr, uint8_t *data, uint16_t len); int8_t stream_sensor_data_forced_mode(struct bme280_dev *dev); /*! * @brief This function reading the sensor's registers through I2C bus. */ int8_t user_i2c_read(uint8_t id, uint8_t reg_addr, uint8_t *data, uint16_t len) { write(fd, ®_addr, 1); read(fd, data, len); return 0; } /*! * @brief This function provides the delay for required time (Microseconds) as per the input provided in some of the * APIs */ void user_delay_ms(uint32_t period) { /* Milliseconds convert to microseconds */ usleep(period * 1000); } /*! * @brief This function for writing the sensor's registers through I2C bus. */ int8_t user_i2c_write(uint8_t id, uint8_t reg_addr, uint8_t *data, uint16_t len) { int8_t *buf; buf = malloc(len + 1); buf[0] = reg_addr; memcpy(buf + 1, data, len); if (write(fd, buf, len + 1) < len) { return BME280_E_COMM_FAIL; } free(buf); return BME280_OK; } /*! * @brief This API used to print the sensor temperature, pressure and humidity data. */ void print_sensor_data(struct bme280_data *comp_data) { float temp, press, hum; #ifdef BME280_FLOAT_ENABLE temp = comp_data->temperature; press = 0.01 * comp_data->pressure; hum = comp_data->humidity; #else #ifdef BME280_64BIT_ENABLE temp = 0.01f * comp_data->temperature; press = 0.0001f * comp_data->pressure; hum = 1.0f / 1024.0f * comp_data->humidity; #else temp = 0.01f * comp_data->temperature; press = 0.01f * comp_data->pressure; hum = 1.0f / 1024.0f * comp_data->humidity; #endif #endif printf("%0.2lf deg C, %0.2lf hPa, %0.2lf%%\n", temp, press, hum); } /*! * @brief This API reads the sensor temperature, pressure and humidity data in forced mode. */ int8_t stream_sensor_data_forced_mode(struct bme280_dev *dev) { /* Variable to define the result */ int8_t rslt = BME280_OK; /* Variable to define the selecting sensors */ uint8_t settings_sel = 0; /* Variable to store minimum wait time between consecutive measurement in force mode */ uint32_t req_delay; /* Structure to get the pressure, temperature and humidity values */ struct bme280_data comp_data; /* Recommended mode of operation: Indoor navigation */ dev->settings.osr_h = BME280_OVERSAMPLING_1X; dev->settings.osr_p = BME280_OVERSAMPLING_16X; dev->settings.osr_t = BME280_OVERSAMPLING_2X; dev->settings.filter = BME280_FILTER_COEFF_16; settings_sel = BME280_OSR_PRESS_SEL | BME280_OSR_TEMP_SEL | BME280_OSR_HUM_SEL | BME280_FILTER_SEL; /* Set the sensor settings */ rslt = bme280_set_sensor_settings(settings_sel, dev); if (rslt != BME280_OK) { fprintf(stderr, "Failed to set sensor settings (code %+d).", rslt); return rslt; } printf("Temperature, Pressure, Humidity\n"); /*Calculate the minimum delay required between consecutive measurement based upon the sensor enabled * and the oversampling configuration. */ req_delay = bme280_cal_meas_delay(&dev->settings); /* Continuously stream sensor data */ while (1) { /* Set the sensor to forced mode */ rslt = bme280_set_sensor_mode(BME280_FORCED_MODE, dev); if (rslt != BME280_OK) { fprintf(stderr, "Failed to set sensor mode (code %+d).", rslt); break; } /* Wait for the measurement to complete and print data */ dev->delay_ms(req_delay); rslt = bme280_get_sensor_data(BME280_ALL, &comp_data, dev); if (rslt != BME280_OK) { fprintf(stderr, "Failed to get sensor data (code %+d).", rslt); break; } print_sensor_data(&comp_data); } return rslt; } static esp_err_t i2c_master_driver_initialize() { i2c_config_t conf = { .mode = I2C_MODE_MASTER, .sda_io_num = i2c_gpio_sda, .sda_pullup_en = GPIO_PULLUP_ENABLE, .scl_io_num = i2c_gpio_scl, .scl_pullup_en = GPIO_PULLUP_ENABLE, .master.clk_speed = i2c_frequency }; return i2c_param_config(i2c_port, &conf); } void app_main(void) { struct bme280_dev dev; /* Variable to define the result */ int8_t rslt = BME280_OK; /* Make sure to select BME280_I2C_ADDR_PRIM or BME280_I2C_ADDR_SEC as needed */ dev.dev_id = BME280_I2C_ADDR_PRIM; /* dev.dev_id = BME280_I2C_ADDR_SEC; */ dev.intf = BME280_I2C_INTF; dev.read = user_i2c_read; dev.write = user_i2c_write; dev.delay_ms = user_delay_ms; if ((fd = open(argv[1], O_RDWR)) < 0) { fprintf(stderr, "Failed to open the i2c bus %s\n", argv[1]); exit(1); } #ifdef __KERNEL__ if (ioctl(fd, I2C_SLAVE, dev.dev_id) < 0) { fprintf(stderr, "Failed to acquire bus access and/or talk to slave.\n"); exit(1); } #endif /* Initialize the bme280 */ rslt = bme280_init(&dev); if (rslt != BME280_OK) { fprintf(stderr, "Failed to initialize the device (code %+d).\n", rslt); exit(1); } rslt = stream_sensor_data_forced_mode(&dev); if (rslt != BME280_OK) { fprintf(stderr, "Failed to stream sensor data (code %+d).\n", rslt); exit(1); } return ; }