Implement naive multithreaded prime generator

This commit is contained in:
Christian Loch 2020-05-07 17:20:30 +02:00 committed by Loch Christian (uib05376)
parent 3a5d001e15
commit 05b8cfa9bc
9 changed files with 262 additions and 0 deletions

4
.idea/encodings.xml Normal file
View File

@ -0,0 +1,4 @@
<?xml version="1.0" encoding="UTF-8"?>
<project version="4">
<component name="Encoding" addBOMForNewFiles="with NO BOM" />
</project>

6
.idea/misc.xml Normal file
View File

@ -0,0 +1,6 @@
<?xml version="1.0" encoding="UTF-8"?>
<project version="4">
<component name="ProjectRootManager" version="2" languageLevel="JDK_1_8" default="true" project-jdk-name="1.8" project-jdk-type="JavaSDK">
<output url="file://$PROJECT_DIR$/out" />
</component>
</project>

8
.idea/modules.xml Normal file
View File

@ -0,0 +1,8 @@
<?xml version="1.0" encoding="UTF-8"?>
<project version="4">
<component name="ProjectModuleManager">
<modules>
<module fileurl="file://$PROJECT_DIR$/RSA.iml" filepath="$PROJECT_DIR$/RSA.iml" />
</modules>
</component>
</project>

6
.idea/vcs.xml Normal file
View File

@ -0,0 +1,6 @@
<?xml version="1.0" encoding="UTF-8"?>
<project version="4">
<component name="VcsDirectoryMappings">
<mapping directory="" vcs="Git" />
</component>
</project>

11
RSA.iml Normal file
View File

@ -0,0 +1,11 @@
<?xml version="1.0" encoding="UTF-8"?>
<module type="JAVA_MODULE" version="4">
<component name="NewModuleRootManager" inherit-compiler-output="true">
<exclude-output />
<content url="file://$MODULE_DIR$">
<sourceFolder url="file://$MODULE_DIR$/src" isTestSource="false" />
</content>
<orderEntry type="inheritedJdk" />
<orderEntry type="sourceFolder" forTests="false" />
</component>
</module>

9
src/Main.java Normal file
View File

@ -0,0 +1,9 @@
import java.math.BigInteger;
public class Main {
public static void main(String[] args) {
BigInteger prime = Prime.generate(32);
System.out.println("Finished - number is "+prime);
}
}

132
src/Prime.java Normal file
View File

@ -0,0 +1,132 @@
import java.math.BigInteger;
import java.util.LinkedList;
import java.util.List;
import java.util.Random;
public class Prime {
/**
* Calculates the integer square root of a number.
* Source: https://stackoverflow.com/questions/4407839/how-can-i-find-the-square-root-of-a-java-biginteger/13023513#13023513
*
* @param x the number
* @return the square root
*/
private static BigInteger sqrt(BigInteger x) {
BigInteger div = BigInteger.ZERO.setBit(x.bitLength()/2);
BigInteger div2 = div;
// Loop until we hit the same value twice in a row, or wind
// up alternating.
for(;;) {
BigInteger y = div.add(x.divide(div)).shiftRight(1);
if (y.equals(div) || y.equals(div2))
return y;
div2 = div;
div = y;
}
}
/**
* Checks, whether a number is a prime or not. Uses naive implementation accelerated by multithreading.
*
* @param candidate the number to check
* @return the boolean
*/
private static boolean isPrime(BigInteger candidate) {
// Check special candidate values 0, 1, 2 and even
if (candidate.compareTo(BigInteger.ZERO) == 0 // candidate == 0
|| candidate.compareTo(BigInteger.ONE) == 0) { // candidate == 1)
return false;
}
if (candidate.compareTo(BigInteger.valueOf(2)) == 0) { // candidate == 2
return true;
} else if (candidate.mod(BigInteger.valueOf(2)).equals(BigInteger.ZERO)) { // candidate is even
return false;
}
// Divide interval into segments, one for each cpu core
int cores = Runtime.getRuntime().availableProcessors();
BigInteger max = sqrt(candidate).add(BigInteger.ONE);
BigInteger min = BigInteger.valueOf(3);
BigInteger step = max.subtract(min).divide(BigInteger.valueOf(cores));
BigInteger remainder = max.subtract(min).mod(BigInteger.valueOf(cores));
int i = 0;
List<Worker> workers = new LinkedList<>();
while (i < cores) {
BigInteger num = step;
if (remainder.compareTo(BigInteger.ZERO) == 1) { // remainder > 0
num = num.add(BigInteger.ONE);
remainder = remainder.subtract(BigInteger.ONE);
}
num = num.subtract(BigInteger.ONE);
if (num.compareTo(BigInteger.ZERO) >= 0) {
workers.add(new Worker(candidate, min, min.add(num), "Thread " + i));
workers.get(i).start();
min = min.add(num).add(BigInteger.ONE);
}
i++;
if (min.compareTo(max) > 0) {
break;
}
}
// Wait for workers to complete
boolean stop = false;
boolean isPrime = true;
while (!stop) {
i = 0;
while (i < workers.size()) {
Worker w = workers.get(i);
try {
w.join(500);
} catch (InterruptedException ex) {
ex.printStackTrace();
}
if (w.hasFinished()) {
if (!w.isPrime()) {
isPrime = false;
stop = true;
break;
} else {
// This worker is done, remove it from the list
workers.remove(w);
if (workers.isEmpty()) {
stop = true;
break;
}
}
}
i++;
}
}
// Stop workers
for (Worker w: workers) {
w.interrupt();
}
return isPrime;
}
/**
* Generates a guaranteed prime of the given length.
*
* @param bits binary length of the prime to generate
* @return prime number
*/
public static BigInteger generate(int bits) {
Random rng = new Random();
BigInteger candidate = new BigInteger(bits, rng);
int i = 0;
while (!isPrime(candidate)){
//System.out.println("Not a prime: " + candidate);
candidate = new BigInteger(bits, rng);
i++;
}
//System.out.println("Found prime after " + i + " tries: " + candidate);
return candidate;
}
}

28
src/RSA.java Normal file
View File

@ -0,0 +1,28 @@
public class RSA {
// p = 5, q = 11
// RSA-Modul N = p * q = 55
// Phi(N) = Phi(p)*Phi(q) | weil eigenschaft eulersche phi funktion und p,q teilerfremd
// = (p-1)*(q-1) | p,q primzahlen, daher nur durch 1 und sich selbst teilbar und alle anderen teilerfremd
// = 4*10 = 40
// e: 1 < e < Phi(N) und ggT(e, Phi(N)) = 1
// e elem aus {3,..} => e = 3
// (e,N) = (3, 55) public key
// -----
// d: e*d kongr 1 mod Phi(N) => e*d mod Phi(N) = 1
// 3*d mod 40 = 1
// Durch probieren: d=27 => (27, 55) private key
//
// ----
// Verschlüsseln
// 13
// c = m^e (mod N) => 13^3 (mod 55) = 52 = c
// ----
// Entschlüsseln
// m = c^d (mod N) => 52^27 (mod 55) = 13 = m
public RSA() {
}
}

58
src/Worker.java Normal file
View File

@ -0,0 +1,58 @@
import java.math.BigInteger;
/**
* Worker class used in multithreading to check, whether a given number is a prime.
*/
public class Worker extends Thread {
private boolean isPrime;
private BigInteger minVal;
private BigInteger maxVal;
private BigInteger candidate;
private boolean finished = false;
private String threadName ;
public Worker(BigInteger candidate, BigInteger min, BigInteger max, String threadName) {
this.minVal = min;
this.maxVal = max;
this.candidate = candidate;
this.isPrime = true;
this.threadName = threadName;
//System.out.println("Created "+threadName+" for "+min+"-"+max+"");
}
/**
* Returns a flag, indicating whether the prime candidate has a divisor in the given interval.
* Since the thread might be still be running, it is important to check it first by using the
* hasFinished() method.
*
* @return flag indicating whether there is a divisor or not
*/
public boolean isPrime() {
return this.isPrime;
}
/**
* Returns if the thread has finished checking the given interval.
*
* @return the boolean
*/
public boolean hasFinished() { return this.finished; }
public void run() {
BigInteger divCandidate = minVal;
if (divCandidate.mod(BigInteger.valueOf(2)).equals(BigInteger.ZERO)){
divCandidate = divCandidate.add(BigInteger.ONE);
}
while (divCandidate.compareTo(maxVal) < 1){ //divCandidate <= maxVal
//System.out.println(this.threadName + " is testing "+divCandidate);
if (candidate.mod(divCandidate).equals(BigInteger.ZERO)) {
this.isPrime = false;
this.finished = true;
return;
}
divCandidate = divCandidate.add(BigInteger.ONE).add(BigInteger.ONE);
}
this.finished = true;
// No divisor found, we are done for this interval
}
}