Repo for ESP32 Weather Station Development
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

509 lines
18KB

  1. #include "bme280.h"
  2. #include "bme280_defs.h"
  3. #include "driver/i2c.h"
  4. #include "display.h"
  5. #include <esp_log.h>
  6. #include <freertos/FreeRTOS.h>
  7. #include <freertos/task.h>
  8. //#include <esp_wifi.h>
  9. //#include "freertos/event_groups.h"
  10. //#include "nvs_flash.h"
  11. //#include <esp_http_server.h>
  12. //#include <sys/param.h>
  13. //#define WIFI_SSID "Netzknecht"
  14. //#define WIFI_PASS "***REMOVED***"
  15. //#define WIFI_RETRIES 10
  16. //
  17. //static EventGroupHandle_t s_wifi_event_group;
  18. //#define WIFI_CONNECTED_BIT BIT0
  19. //#define WIFI_FAIL_BIT BIT1
  20. //
  21. //static const char *TAG = "wifi station";
  22. //static int s_retry_num = 0;
  23. //
  24. //char cur_value_str[255];
  25. //
  26. ///* An HTTP GET handler */
  27. //static esp_err_t hello_get_handler(httpd_req_t *req)
  28. //{
  29. // char* buf;
  30. // size_t buf_len;
  31. //
  32. // /* Get header value string length and allocate memory for length + 1,
  33. // * extra byte for null termination */
  34. // buf_len = httpd_req_get_hdr_value_len(req, "Host") + 1;
  35. // if (buf_len > 1) {
  36. // buf = malloc(buf_len);
  37. // /* Copy null terminated value string into buffer */
  38. // if (httpd_req_get_hdr_value_str(req, "Host", buf, buf_len) == ESP_OK) {
  39. // ESP_LOGI(TAG, "Found header => Host: %s", buf);
  40. // }
  41. // free(buf);
  42. // }
  43. //
  44. // buf_len = httpd_req_get_hdr_value_len(req, "Test-Header-2") + 1;
  45. // if (buf_len > 1) {
  46. // buf = malloc(buf_len);
  47. // if (httpd_req_get_hdr_value_str(req, "Test-Header-2", buf, buf_len) == ESP_OK) {
  48. // ESP_LOGI(TAG, "Found header => Test-Header-2: %s", buf);
  49. // }
  50. // free(buf);
  51. // }
  52. //
  53. // buf_len = httpd_req_get_hdr_value_len(req, "Test-Header-1") + 1;
  54. // if (buf_len > 1) {
  55. // buf = malloc(buf_len);
  56. // if (httpd_req_get_hdr_value_str(req, "Test-Header-1", buf, buf_len) == ESP_OK) {
  57. // ESP_LOGI(TAG, "Found header => Test-Header-1: %s", buf);
  58. // }
  59. // free(buf);
  60. // }
  61. //
  62. // /* Read URL query string length and allocate memory for length + 1,
  63. // * extra byte for null termination */
  64. // buf_len = httpd_req_get_url_query_len(req) + 1;
  65. // if (buf_len > 1) {
  66. // buf = malloc(buf_len);
  67. // if (httpd_req_get_url_query_str(req, buf, buf_len) == ESP_OK) {
  68. // ESP_LOGI(TAG, "Found URL query => %s", buf);
  69. // char param[32];
  70. // /* Get value of expected key from query string */
  71. // if (httpd_query_key_value(buf, "query1", param, sizeof(param)) == ESP_OK) {
  72. // ESP_LOGI(TAG, "Found URL query parameter => query1=%s", param);
  73. // }
  74. // if (httpd_query_key_value(buf, "query3", param, sizeof(param)) == ESP_OK) {
  75. // ESP_LOGI(TAG, "Found URL query parameter => query3=%s", param);
  76. // }
  77. // if (httpd_query_key_value(buf, "query2", param, sizeof(param)) == ESP_OK) {
  78. // ESP_LOGI(TAG, "Found URL query parameter => query2=%s", param);
  79. // }
  80. // }
  81. // free(buf);
  82. // }
  83. //
  84. // /* Set some custom headers */
  85. // httpd_resp_set_hdr(req, "Custom-Header-1", "Custom-Value-1");
  86. // httpd_resp_set_hdr(req, "Custom-Header-2", "Custom-Value-2");
  87. //
  88. // /* Send response with custom headers and body set as the
  89. // * string passed in user context*/
  90. // const char* resp_str = cur_value_str;
  91. // httpd_resp_send(req, resp_str, strlen(resp_str));
  92. //
  93. // /* After sending the HTTP response the old HTTP request
  94. // * headers are lost. Check if HTTP request headers can be read now. */
  95. // if (httpd_req_get_hdr_value_len(req, "Host") == 0) {
  96. // ESP_LOGI(TAG, "Request headers lost");
  97. // }
  98. // return ESP_OK;
  99. //}
  100. //
  101. //static httpd_uri_t hello = {
  102. // .uri = "/hello",
  103. // .method = HTTP_GET,
  104. // .handler = hello_get_handler,
  105. // /* Let's pass response string in user
  106. // * context to demonstrate it's usage */
  107. // .user_ctx = "Hello World!"
  108. //};
  109. //
  110. //static httpd_handle_t start_webserver(void)
  111. //{
  112. // httpd_handle_t server = NULL;
  113. // httpd_config_t config = HTTPD_DEFAULT_CONFIG();
  114. //
  115. // // Start the httpd server
  116. // ESP_LOGI(TAG, "Starting server on port: '%d'", config.server_port);
  117. // if (httpd_start(&server, &config) == ESP_OK) {
  118. // // Set URI handlers
  119. // ESP_LOGI(TAG, "Registering URI handlers");
  120. // httpd_register_uri_handler(server, &hello);
  121. // return server;
  122. // }
  123. //
  124. // ESP_LOGI(TAG, "Error starting server!");
  125. // return NULL;
  126. //}
  127. //
  128. //static void stop_webserver(httpd_handle_t server)
  129. //{
  130. // // Stop the httpd server
  131. // httpd_stop(server);
  132. //}
  133. //
  134. //static void disconnect_handler(void* arg, esp_event_base_t event_base,
  135. // int32_t event_id, void* event_data)
  136. //{
  137. // httpd_handle_t* server = (httpd_handle_t*) arg;
  138. // if (*server) {
  139. // ESP_LOGI(TAG, "Stopping webserver");
  140. // stop_webserver(*server);
  141. // *server = NULL;
  142. // }
  143. //}
  144. //
  145. //static void connect_handler(void* arg, esp_event_base_t event_base,
  146. // int32_t event_id, void* event_data)
  147. //{
  148. // httpd_handle_t* server = (httpd_handle_t*) arg;
  149. // if (*server == NULL) {
  150. // ESP_LOGI(TAG, "Starting webserver");
  151. // *server = start_webserver();
  152. // }
  153. //}
  154. //
  155. //static void event_handler(void* arg, esp_event_base_t event_base,
  156. // int32_t event_id, void* event_data)
  157. //{
  158. // if (event_base == WIFI_EVENT && event_id == WIFI_EVENT_STA_START) {
  159. // esp_wifi_connect();
  160. // } else if (event_base == WIFI_EVENT && event_id == WIFI_EVENT_STA_DISCONNECTED) {
  161. // if (s_retry_num < WIFI_RETRIES) {
  162. // esp_wifi_connect();
  163. // s_retry_num++;
  164. // ESP_LOGI(TAG, "retry to connect to the AP");
  165. // } else {
  166. // xEventGroupSetBits(s_wifi_event_group, WIFI_FAIL_BIT);
  167. // }
  168. // ESP_LOGI(TAG,"connect to the AP fail");
  169. // } else if (event_base == IP_EVENT && event_id == IP_EVENT_STA_GOT_IP) {
  170. // ip_event_got_ip_t* event = (ip_event_got_ip_t*) event_data;
  171. // ESP_LOGI(TAG, "got ip:%s",
  172. // ip4addr_ntoa(&event->ip_info.ip));
  173. // s_retry_num = 0;
  174. // xEventGroupSetBits(s_wifi_event_group, WIFI_CONNECTED_BIT);
  175. // }
  176. //}
  177. //void wifi_init_sta()
  178. //{
  179. // s_wifi_event_group = xEventGroupCreate();
  180. //
  181. // tcpip_adapter_init();
  182. //
  183. // ESP_ERROR_CHECK(esp_event_loop_create_default());
  184. //
  185. // wifi_init_config_t cfg = WIFI_INIT_CONFIG_DEFAULT();
  186. // ESP_ERROR_CHECK(esp_wifi_init(&cfg));
  187. //
  188. // //tcpip_adapter_dhcpc_stop(TCPIP_ADAPTER_IF_STA);
  189. // //tcpip_adapter_ip_info_t info;
  190. // //ip4_addr_t gw;
  191. // //gw.addr = ipaddr_addr("192.168.0.1");
  192. // //info.gw = gw;
  193. // //ip4_addr_t ip;
  194. // //ip.addr = ipaddr_addr("192.168.0.110");
  195. // //info.ip = ip;
  196. // //ip4_addr_t netmask;
  197. // //netmask.addr = ipaddr_addr("255.255.255.0");
  198. // //info.netmask = netmask;
  199. // //tcpip_adapter_sta_start(0, &info);
  200. //
  201. // ESP_ERROR_CHECK(esp_event_handler_register(WIFI_EVENT, ESP_EVENT_ANY_ID, &event_handler, NULL));
  202. // ESP_ERROR_CHECK(esp_event_handler_register(IP_EVENT, IP_EVENT_STA_GOT_IP, &event_handler, NULL));
  203. //
  204. // wifi_config_t wifi_config = {
  205. // .sta = {
  206. // .ssid = WIFI_SSID,
  207. // .password = WIFI_PASS
  208. // },
  209. // };
  210. // ESP_ERROR_CHECK(esp_wifi_set_mode(WIFI_MODE_STA) );
  211. // ESP_ERROR_CHECK(esp_wifi_set_config(ESP_IF_WIFI_STA, &wifi_config) );
  212. // ESP_ERROR_CHECK(esp_wifi_start() );
  213. //
  214. // ESP_LOGI(TAG, "wifi_init_sta finished.");
  215. //
  216. // /* Waiting until either the connection is established (WIFI_CONNECTED_BIT) or connection failed for the maximum
  217. // * number of re-tries (WIFI_FAIL_BIT). The bits are set by event_handler() (see above) */
  218. // EventBits_t bits = xEventGroupWaitBits(s_wifi_event_group,
  219. // WIFI_CONNECTED_BIT | WIFI_FAIL_BIT,
  220. // pdFALSE,
  221. // pdFALSE,
  222. // portMAX_DELAY);
  223. //
  224. // //tcpip_adapter_set_ip_info(TCPIP_ADAPTER_IF_STA, &info);
  225. // /* xEventGroupWaitBits() returns the bits before the call returned, hence we can test which event actually
  226. // * happened. */
  227. // if (bits & WIFI_CONNECTED_BIT) {
  228. // ESP_LOGI(TAG, "connected to ap SSID:%s password:%s",
  229. // WIFI_SSID, WIFI_PASS);
  230. // } else if (bits & WIFI_FAIL_BIT) {
  231. // ESP_LOGI(TAG, "Failed to connect to SSID:%s, password:%s",
  232. // WIFI_SSID, WIFI_PASS);
  233. // } else {
  234. // ESP_LOGE(TAG, "UNEXPECTED EVENT");
  235. // }
  236. //
  237. // ESP_ERROR_CHECK(esp_event_handler_unregister(IP_EVENT, IP_EVENT_STA_GOT_IP, &event_handler));
  238. // ESP_ERROR_CHECK(esp_event_handler_unregister(WIFI_EVENT, ESP_EVENT_ANY_ID, &event_handler));
  239. // vEventGroupDelete(s_wifi_event_group);
  240. //}
  241. void i2c_setup()
  242. {
  243. printf("Setting up I�C driver on port 1... ");
  244. i2c_config_t config;
  245. config.mode = I2C_MODE_MASTER;
  246. config.sda_io_num = 33;
  247. config.sda_pullup_en = GPIO_PULLUP_ENABLE;
  248. config.scl_io_num = 32;
  249. config.scl_pullup_en = GPIO_PULLUP_ENABLE;
  250. config.master.clk_speed = 100000;
  251. i2c_param_config(I2C_NUM_0, &config);
  252. printf("Set driver parameters... ");
  253. esp_err_t err = i2c_driver_install(I2C_NUM_0, I2C_MODE_MASTER, 0, 0, 0);
  254. if (err == ESP_OK)
  255. printf("Driver installed!\n");
  256. else if (err == ESP_ERR_INVALID_ARG)
  257. printf("Driver install failed, invalid arguments!\n");
  258. else
  259. printf("Driver install failed!\n");
  260. }
  261. int8_t i2c_read(uint8_t dev_id, uint8_t reg_addr, uint8_t *data, uint16_t len) {
  262. i2c_cmd_handle_t cmd = i2c_cmd_link_create();
  263. i2c_master_start(cmd);
  264. i2c_master_write_byte(cmd, dev_id << 1 | I2C_MASTER_WRITE, 1);
  265. i2c_master_write_byte(cmd, reg_addr, 1);
  266. i2c_master_start(cmd);
  267. i2c_master_write_byte(cmd, dev_id << 1 | I2C_MASTER_READ, 1);
  268. if (len > 1) {
  269. i2c_master_read(cmd, data, len - 1, I2C_MASTER_ACK);
  270. }
  271. i2c_master_read_byte(cmd, data + len - 1, I2C_MASTER_NACK);
  272. i2c_master_stop(cmd);
  273. i2c_master_cmd_begin(I2C_NUM_0, cmd, 500 / portTICK_RATE_MS);
  274. i2c_cmd_link_delete(cmd);
  275. return 0;
  276. }
  277. int8_t i2c_write(uint8_t dev_id, uint8_t reg_addr, uint8_t *data, uint16_t len) {
  278. //printf("Writing to bus: dev_id=%x, reg_addr=%x, data=%p, length=%u\n", dev_id, reg_addr, data, len);
  279. i2c_cmd_handle_t cmd = i2c_cmd_link_create();
  280. i2c_master_start(cmd);
  281. i2c_master_write_byte(cmd, (dev_id << 1) | I2C_MASTER_WRITE, 1);
  282. i2c_master_write_byte(cmd, reg_addr, 1);
  283. i2c_master_write(cmd, data, len, 1);
  284. i2c_master_stop(cmd);
  285. i2c_master_cmd_begin(I2C_NUM_0, cmd, 500 / portTICK_RATE_MS);
  286. i2c_cmd_link_delete(cmd);
  287. return 0;
  288. }
  289. void i2c_delay(uint32_t period) {
  290. vTaskDelay(period / portTICK_PERIOD_MS);
  291. }
  292. void i2c_shutdown()
  293. {
  294. printf("Shutting down I�C bus... ");
  295. esp_err_t err = i2c_driver_delete(I2C_NUM_0);
  296. if (err == ESP_ERR_INVALID_ARG)
  297. printf("Failed, invalid arguments!\n");
  298. else
  299. printf("Success!\n");
  300. }
  301. void read_sensor(struct bme280_dev* dev, int32_t* temp, uint32_t* pressure, uint32_t* humidity) {
  302. uint8_t settings_sel;
  303. uint32_t req_delay;
  304. struct bme280_data comp_data;
  305. dev->settings.osr_h = BME280_OVERSAMPLING_16X;
  306. dev->settings.osr_p = BME280_OVERSAMPLING_16X;
  307. dev->settings.osr_t = BME280_OVERSAMPLING_16X;
  308. dev->settings.filter = BME280_FILTER_COEFF_16;
  309. settings_sel = BME280_OSR_PRESS_SEL | BME280_OSR_TEMP_SEL | BME280_OSR_HUM_SEL | BME280_FILTER_SEL;
  310. bme280_set_sensor_settings(settings_sel, dev);
  311. req_delay = 12*bme280_cal_meas_delay(&(dev->settings));
  312. /* Continuously stream sensor data */
  313. bme280_set_sensor_mode(BME280_FORCED_MODE, dev);
  314. /* Wait for the measurement to complete and print data @25Hz */
  315. dev->delay_ms(req_delay / portTICK_PERIOD_MS);
  316. bme280_get_sensor_data(BME280_ALL, &comp_data, dev);
  317. *temp = comp_data.temperature;
  318. *pressure = comp_data.pressure;
  319. *humidity = comp_data.humidity;
  320. }
  321. void read_sensor2(struct bme280_dev* dev, int32_t* temp, uint32_t* pressure, uint32_t* humidity) {
  322. uint8_t settings_sel;
  323. uint32_t req_delay;
  324. struct bme280_data comp_data;
  325. dev->settings.osr_h = BME280_OVERSAMPLING_16X;
  326. dev->settings.osr_p = BME280_OVERSAMPLING_16X;
  327. dev->settings.osr_t = BME280_OVERSAMPLING_16X;
  328. dev->settings.filter = BME280_FILTER_COEFF_16;
  329. settings_sel = BME280_OSR_PRESS_SEL | BME280_OSR_TEMP_SEL | BME280_OSR_HUM_SEL | BME280_FILTER_SEL;
  330. bme280_set_sensor_settings(settings_sel, dev);
  331. /*Calculate the minimum delay required between consecutive measurement based upon the sensor enabled
  332. * and the oversampling configuration. */
  333. req_delay = 12*bme280_cal_meas_delay(&(dev->settings));
  334. bme280_set_sensor_mode(BME280_FORCED_MODE, dev);
  335. /* Wait for the measurement to complete and print data @25Hz */
  336. dev->delay_ms(req_delay / portTICK_PERIOD_MS);
  337. bme280_get_sensor_data(BME280_ALL, &comp_data, dev);
  338. *temp = comp_data.temperature;
  339. *pressure = comp_data.pressure;
  340. *humidity = comp_data.humidity;
  341. }
  342. //void print_data(u8g2_t* u8g2, int32_t temp_raw, uint32_t pressure_raw, uint32_t humidity_raw,
  343. // int32_t temp2_raw, uint32_t pressure2_raw, uint32_t humidity2_raw) {
  344. // // Calc temperature pre and post comma values
  345. // int32_t temp_pre = temp_raw / 100;
  346. // int32_t temp_post = (abs(temp_raw) % 100) / 10;
  347. // int32_t temp2_pre = temp2_raw / 100;
  348. // int32_t temp2_post = (abs(temp2_raw) % 100) / 10;
  349. //
  350. // // Calc pressure values
  351. // uint32_t press = pressure_raw / 100;
  352. // uint32_t press2 = pressure2_raw / 100;
  353. //
  354. // // Calc humidity pre and post comma values
  355. // uint32_t humid_pre = humidity_raw / 1024;
  356. // uint32_t humid_post = (humidity_raw - humid_pre*1024) * 10 / 1024;
  357. // uint32_t humid2_pre = humidity2_raw / 1024;
  358. // uint32_t humid2_post = (humidity2_raw - humid2_pre*1024) * 10 / 1024;
  359. //
  360. // // Format temperatures
  361. // char temp_str[2*(sizeof(int)*8+1)+5] = ""; // ""
  362. // char temp_pre_str[sizeof(int)*8+1];
  363. // itoa(temp_pre, temp_pre_str, 10);
  364. // char temp_post_str[sizeof(int)*8+1];
  365. // itoa(temp_post, temp_post_str, 10);
  366. // char temp2_pre_str[sizeof(int)*8+1];
  367. // itoa(temp2_pre, temp2_pre_str, 10);
  368. // char temp2_post_str[sizeof(int)*8+1];
  369. // itoa(temp2_post, temp2_post_str, 10);
  370. // if (temp_pre < 10)
  371. // strcat(temp_str, " "); // Add space if first temperatur is just one digit long " "
  372. // strcat(temp_str, temp_pre_str); // " 1"
  373. // strcat(temp_str, ","); // " 1,"
  374. // strcat(temp_str, temp_post_str); // " 1,3"
  375. // strcat(temp_str, " "); // " 1,3 "
  376. // if (temp2_pre >= 0)
  377. // strcat(temp_str, " "); // Add space if there is no minus sign " 1,3 "
  378. // if (temp2_pre < 10)
  379. // strcat(temp_str, " "); // Add space if second temperatur is just one digit long " 1,3 "
  380. // strcat(temp_str, temp2_pre_str); // " 1,3 7"
  381. // strcat(temp_str, ","); // " 1,3 7,"
  382. // strcat(temp_str, temp2_post_str); // " 1,3 7,2"
  383. // strcat(temp_str, " �C"); // " 1,3 7,2 �C"
  384. //
  385. // // Format temperatures
  386. // char humid_str[2*(sizeof(int)*8+1)+5] = ""; // ""
  387. // char humid_pre_str[sizeof(int)*8+1];
  388. // itoa(humid_pre, humid_pre_str, 10);
  389. // char humid_post_str[sizeof(int)*8+1];
  390. // itoa(humid_post, humid_post_str, 10);
  391. // char humid2_pre_str[sizeof(int)*8+1];
  392. // itoa(humid2_pre, humid2_pre_str, 10);
  393. // char humid2_post_str[sizeof(int)*8+1];
  394. // itoa(humid2_post, humid2_post_str, 10);
  395. // strcat(humid_str, humid_pre_str); // "12"
  396. // strcat(humid_str, ","); // "12,"
  397. // strcat(humid_str, humid_post_str); // "12,5"
  398. // strcat(humid_str, " "); // "12,5 "
  399. // strcat(humid_str, humid2_pre_str); // "12,5 45"
  400. // strcat(humid_str, ","); // "12,5 45,"
  401. // strcat(humid_str, humid2_post_str); // "12,5 45,23"
  402. // strcat(humid_str, " %"); // "12,5 45,23 %"
  403. //
  404. // // Format pressure
  405. // char pressure_str[2*(sizeof(int)*8+1)+5] = ""; // ""
  406. // char press1_str[sizeof(int)*8+1];
  407. // itoa(press, press1_str, 10);
  408. // char press2_str[sizeof(int)*8+1];
  409. // itoa(press2, press2_str, 10);
  410. // if (press < 1000)
  411. // strcat(pressure_str, " ");
  412. // strcat(pressure_str, press1_str);
  413. // strcat(pressure_str, " ");
  414. // if (press2 < 1000)
  415. // strcat(pressure_str, " ");
  416. // strcat(pressure_str, press2_str);
  417. // strcat(pressure_str, " hPa");
  418. //
  419. // u8g2_ClearBuffer(u8g2);
  420. // u8g2_SetFont(u8g2, u8g2_font_profont17_mf);
  421. // int8_t fontheight = u8g2_GetAscent(u8g2);
  422. // int8_t fontmargin = abs(u8g2_GetDescent(u8g2))+2;
  423. // u8g2_DrawStr(u8g2, 0, fontheight, " IN OUT ");
  424. // u8g2_DrawStr(u8g2, 0, 2*fontheight + fontmargin, temp_str);
  425. // u8g2_DrawStr(u8g2, 0, 3*fontheight + 2*fontmargin, humid_str);
  426. // u8g2_DrawStr(u8g2, 0, 4*fontheight + 3*fontmargin, pressure_str);
  427. // u8g2_SendBuffer(u8g2);
  428. //}
  429. void app_main(void)
  430. {
  431. int32_t temp = -12;
  432. uint32_t pressure = 0;
  433. uint32_t humidity = 0;
  434. int32_t temp2 = 0;
  435. uint32_t pressure2 = 0;
  436. uint32_t humidity2 = 0;
  437. // INIT SENSOR
  438. i2c_setup();
  439. struct bme280_dev dev;
  440. dev.dev_id = 0x76;
  441. dev.intf = BME280_I2C_INTF;
  442. dev.read = i2c_read;
  443. dev.write = i2c_write;
  444. dev.delay_ms = i2c_delay;
  445. bme280_init(&dev);
  446. // INIT SENSOR2
  447. struct bme280_dev dev2;
  448. dev2.dev_id = 0x77;
  449. dev2.intf = BME280_I2C_INTF;
  450. dev2.read = i2c_read;
  451. dev2.write = i2c_write;
  452. dev2.delay_ms = i2c_delay;
  453. bme280_init(&dev2);
  454. // INIT WIFI
  455. //Initialize NVS
  456. // esp_err_t ret = nvs_flash_init();
  457. // if (ret == ESP_ERR_NVS_NO_FREE_PAGES || ret == ESP_ERR_NVS_NEW_VERSION_FOUND) {
  458. // ESP_ERROR_CHECK(nvs_flash_erase());
  459. // ret = nvs_flash_init();
  460. // }
  461. // ESP_ERROR_CHECK(ret);
  462. //
  463. // ESP_LOGI(TAG, "ESP_WIFI_MODE_STA");
  464. // wifi_init_sta();
  465. // INIT WEBSERVER
  466. // static httpd_handle_t server = NULL;
  467. // ESP_ERROR_CHECK(esp_event_handler_register(IP_EVENT, IP_EVENT_STA_GOT_IP, &connect_handler, &server));
  468. // ESP_ERROR_CHECK(esp_event_handler_register(WIFI_EVENT, WIFI_EVENT_STA_DISCONNECTED, &disconnect_handler, &server));
  469. // server = start_webserver();
  470. init_display();
  471. read_sensor(&dev, &temp, &pressure, &humidity);
  472. read_sensor(&dev2, &temp2, &pressure2, &humidity2);
  473. display_data(temp, pressure, humidity, temp2, pressure2, humidity2);
  474. while (1) {
  475. read_sensor(&dev, &temp, &pressure, &humidity);
  476. read_sensor(&dev2, &temp2, &pressure2, &humidity2);
  477. display_data(temp, pressure, humidity, temp2, pressure2, humidity2);
  478. vTaskDelay(1000 / portTICK_PERIOD_MS);
  479. }
  480. }