// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. /* ---------------------------------------- Non DMA version of the spi_master driver ---------------------------------------- ------------------------------------------------------------------------------------ Based on esp-idf 'spi_master', modified by LoBo (https://github.com/loboris) 03/2017 ------------------------------------------------------------------------------------ * Transfers data to SPI device in direct mode, not using DMA * All configuration options (bus, device, transaction) are the same as in spi_master driver * Transfers uses the semaphore (taken in select function & given in deselect function) to protect the transfer * Number of the devices attached to the bus which uses hardware CS can be 3 ('NO_CS') * Additional devices which uses software CS can be attached to the bus, up to 'NO_DEV' * 'spi_bus_initialize' & 'spi_bus_remove' functions are removed, spi bus is initiated/removed in spi_lobo_bus_add_device/spi_lobo_bus_remove_device when needed * 'spi_lobo_bus_add_device' function has added parameter 'bus_config' and automatically initializes spi bus device if not already initialized * 'spi_lobo_bus_remove_device' automatically removes spi bus device if no other devices are attached to it. * Devices can have individual bus_configs, so different mosi, miso, sck pins can be configured for each device Reconfiguring the bus is done automaticaly in 'spi_lobo_device_select' function * 'spi_lobo_device_select' & 'spi_lobo_device_deselect' functions handles devices configuration changes and software CS * Some helper functions are added ('spi_lobo_get_speed', 'spi_lobo_set_speed', ...) * All structures are available in header file for easy creation of user low level spi functions. See **tftfunc.c** source for examples. * Transimt and receive lenghts are limited only by available memory Main driver's function is 'spi_lobo_transfer_data()' * TRANSMIT 8-bit data to spi device from 'trans->tx_buffer' or 'trans->tx_data' (trans->lenght/8 bytes) * and RECEIVE data to 'trans->rx_buffer' or 'trans->rx_data' (trans->rx_length/8 bytes) * Lengths must be 8-bit multiples! * If trans->rx_buffer is NULL or trans->rx_length is 0, only transmits data * If trans->tx_buffer is NULL or trans->length is 0, only receives data * If the device is in duplex mode (LB_SPI_DEVICE_HALFDUPLEX flag NOT set), data are transmitted and received simultaneously. * If the device is in half duplex mode (LB_SPI_DEVICE_HALFDUPLEX flag IS set), data are received after transmission * 'address', 'command' and 'dummy bits' are transmitted before data phase IF set in device's configuration * and IF 'trans->length' and 'trans->rx_length' are NOT both 0 * If configured, devices 'pre_cb' callback is called before and 'post_cb' after the transmission * If device was not previously selected, it will be selected before transmission and deselected after transmission. */ /* Replace this include with #include "driver/spi_master_lobo.h" if the driver is located in esp-isf/components */ #include "freertos/FreeRTOS.h" #include #include "soc/spi_reg.h" #include "soc/dport_reg.h" #include "esp_log.h" #include "freertos/semphr.h" #include "driver/uart.h" #include "driver/gpio.h" #include "spi_master_lobo.h" #include "driver/periph_ctrl.h" static spi_lobo_host_t *spihost[3] = {NULL}; static const char *SPI_TAG = "spi_lobo_master"; #define SPI_CHECK(a, str, ret_val) \ if (!(a)) { \ ESP_LOGE(SPI_TAG,"%s(%d): %s", __FUNCTION__, __LINE__, str); \ return (ret_val); \ } /* Stores a bunch of per-spi-peripheral data. */ typedef struct { const uint8_t spiclk_out; //GPIO mux output signals const uint8_t spid_out; const uint8_t spiq_out; const uint8_t spiwp_out; const uint8_t spihd_out; const uint8_t spid_in; //GPIO mux input signals const uint8_t spiq_in; const uint8_t spiwp_in; const uint8_t spihd_in; const uint8_t spics_out[3]; // /CS GPIO output mux signals const uint8_t spiclk_native; //IO pins of IO_MUX muxed signals const uint8_t spid_native; const uint8_t spiq_native; const uint8_t spiwp_native; const uint8_t spihd_native; const uint8_t spics0_native; const uint8_t irq; //irq source for interrupt mux const uint8_t irq_dma; //dma irq source for interrupt mux const periph_module_t module; //peripheral module, for enabling clock etc spi_dev_t *hw; //Pointer to the hardware registers } spi_signal_conn_t; /* Bunch of constants for every SPI peripheral: GPIO signals, irqs, hw addr of registers etc */ static const spi_signal_conn_t io_signal[3]={ { .spiclk_out=SPICLK_OUT_IDX, .spid_out=SPID_OUT_IDX, .spiq_out=SPIQ_OUT_IDX, .spiwp_out=SPIWP_OUT_IDX, .spihd_out=SPIHD_OUT_IDX, .spid_in=SPID_IN_IDX, .spiq_in=SPIQ_IN_IDX, .spiwp_in=SPIWP_IN_IDX, .spihd_in=SPIHD_IN_IDX, .spics_out={SPICS0_OUT_IDX, SPICS1_OUT_IDX, SPICS2_OUT_IDX}, .spiclk_native=6, .spid_native=8, .spiq_native=7, .spiwp_native=10, .spihd_native=9, .spics0_native=11, .irq=ETS_SPI1_INTR_SOURCE, .irq_dma=ETS_SPI1_DMA_INTR_SOURCE, .module=PERIPH_SPI_MODULE, .hw=&SPI1 }, { .spiclk_out=HSPICLK_OUT_IDX, .spid_out=HSPID_OUT_IDX, .spiq_out=HSPIQ_OUT_IDX, .spiwp_out=HSPIWP_OUT_IDX, .spihd_out=HSPIHD_OUT_IDX, .spid_in=HSPID_IN_IDX, .spiq_in=HSPIQ_IN_IDX, .spiwp_in=HSPIWP_IN_IDX, .spihd_in=HSPIHD_IN_IDX, .spics_out={HSPICS0_OUT_IDX, HSPICS1_OUT_IDX, HSPICS2_OUT_IDX}, .spiclk_native=14, .spid_native=13, .spiq_native=12, .spiwp_native=2, .spihd_native=4, .spics0_native=15, .irq=ETS_SPI2_INTR_SOURCE, .irq_dma=ETS_SPI2_DMA_INTR_SOURCE, .module=PERIPH_HSPI_MODULE, .hw=&SPI2 }, { .spiclk_out=VSPICLK_OUT_IDX, .spid_out=VSPID_OUT_IDX, .spiq_out=VSPIQ_OUT_IDX, .spiwp_out=VSPIWP_OUT_IDX, .spihd_out=VSPIHD_OUT_IDX, .spid_in=VSPID_IN_IDX, .spiq_in=VSPIQ_IN_IDX, .spiwp_in=VSPIWP_IN_IDX, .spihd_in=VSPIHD_IN_IDX, .spics_out={VSPICS0_OUT_IDX, VSPICS1_OUT_IDX, VSPICS2_OUT_IDX}, .spiclk_native=18, .spid_native=23, .spiq_native=19, .spiwp_native=22, .spihd_native=21, .spics0_native=5, .irq=ETS_SPI3_INTR_SOURCE, .irq_dma=ETS_SPI3_DMA_INTR_SOURCE, .module=PERIPH_VSPI_MODULE, .hw=&SPI3 } }; //====================================================================================================== #define DMA_CHANNEL_ENABLED(dma_chan) (BIT(dma_chan-1)) typedef void(*dmaworkaround_cb_t)(void *arg); //Set up a list of dma descriptors. dmadesc is an array of descriptors. Data is the buffer to point to. //-------------------------------------------------------------------------------------------- void spi_lobo_setup_dma_desc_links(lldesc_t *dmadesc, int len, const uint8_t *data, bool isrx) { int n = 0; while (len) { int dmachunklen = len; if (dmachunklen > SPI_MAX_DMA_LEN) dmachunklen = SPI_MAX_DMA_LEN; if (isrx) { //Receive needs DMA length rounded to next 32-bit boundary dmadesc[n].size = (dmachunklen + 3) & (~3); dmadesc[n].length = (dmachunklen + 3) & (~3); } else { dmadesc[n].size = dmachunklen; dmadesc[n].length = dmachunklen; } dmadesc[n].buf = (uint8_t *)data; dmadesc[n].eof = 0; dmadesc[n].sosf = 0; dmadesc[n].owner = 1; dmadesc[n].qe.stqe_next = &dmadesc[n + 1]; len -= dmachunklen; data += dmachunklen; n++; } dmadesc[n - 1].eof = 1; //Mark last DMA desc as end of stream. dmadesc[n - 1].qe.stqe_next = NULL; } /* Code for workaround for DMA issue in ESP32 v0/v1 silicon */ static volatile int dmaworkaround_channels_busy[2] = {0, 0}; static dmaworkaround_cb_t dmaworkaround_cb; static void *dmaworkaround_cb_arg; static portMUX_TYPE dmaworkaround_mux = portMUX_INITIALIZER_UNLOCKED; static int dmaworkaround_waiting_for_chan = 0; static bool spi_periph_claimed[3] = {true, false, false}; static uint8_t spi_dma_chan_enabled = 0; static portMUX_TYPE spi_dma_spinlock = portMUX_INITIALIZER_UNLOCKED; //-------------------------------------------------------------------------------------------- bool IRAM_ATTR spi_lobo_dmaworkaround_req_reset(int dmachan, dmaworkaround_cb_t cb, void *arg) { int otherchan = (dmachan == 1) ? 2 : 1; bool ret; portENTER_CRITICAL(&dmaworkaround_mux); if (dmaworkaround_channels_busy[otherchan-1]) { //Other channel is busy. Call back when it's done. dmaworkaround_cb = cb; dmaworkaround_cb_arg = arg; dmaworkaround_waiting_for_chan = otherchan; ret = false; } else { //Reset DMA DPORT_SET_PERI_REG_MASK(DPORT_PERIP_RST_EN_REG, DPORT_SPI_DMA_RST); DPORT_CLEAR_PERI_REG_MASK(DPORT_PERIP_RST_EN_REG, DPORT_SPI_DMA_RST); ret = true; } portEXIT_CRITICAL(&dmaworkaround_mux); return ret; } //------------------------------------------------------- bool IRAM_ATTR spi_lobo_dmaworkaround_reset_in_progress() { return (dmaworkaround_waiting_for_chan != 0); } //----------------------------------------------------- void IRAM_ATTR spi_lobo_dmaworkaround_idle(int dmachan) { portENTER_CRITICAL(&dmaworkaround_mux); dmaworkaround_channels_busy[dmachan-1] = 0; if (dmaworkaround_waiting_for_chan == dmachan) { //Reset DMA DPORT_SET_PERI_REG_MASK(DPORT_PERIP_RST_EN_REG, DPORT_SPI_DMA_RST); DPORT_CLEAR_PERI_REG_MASK(DPORT_PERIP_RST_EN_REG, DPORT_SPI_DMA_RST); dmaworkaround_waiting_for_chan = 0; //Call callback dmaworkaround_cb(dmaworkaround_cb_arg); } portEXIT_CRITICAL(&dmaworkaround_mux); } //---------------------------------------------------------------- void IRAM_ATTR spi_lobo_dmaworkaround_transfer_active(int dmachan) { portENTER_CRITICAL(&dmaworkaround_mux); dmaworkaround_channels_busy[dmachan-1] = 1; portEXIT_CRITICAL(&dmaworkaround_mux); } //Returns true if this peripheral is successfully claimed, false if otherwise. //----------------------------------------------------- bool spi_lobo_periph_claim(spi_lobo_host_device_t host) { bool ret = __sync_bool_compare_and_swap(&spi_periph_claimed[host], false, true); if (ret) periph_module_enable(io_signal[host].module); return ret; } //Returns true if this peripheral is successfully freed, false if otherwise. //----------------------------------------------- bool spi_lobo_periph_free(spi_lobo_host_device_t host) { bool ret = __sync_bool_compare_and_swap(&spi_periph_claimed[host], true, false); if (ret) periph_module_disable(io_signal[host].module); return ret; } //----------------------------------------- bool spi_lobo_dma_chan_claim (int dma_chan) { bool ret = false; assert( dma_chan == 1 || dma_chan == 2 ); portENTER_CRITICAL(&spi_dma_spinlock); if ( !(spi_dma_chan_enabled & DMA_CHANNEL_ENABLED(dma_chan)) ) { // get the channel only when it's not claimed yet. spi_dma_chan_enabled |= DMA_CHANNEL_ENABLED(dma_chan); ret = true; } periph_module_enable( PERIPH_SPI_DMA_MODULE ); portEXIT_CRITICAL(&spi_dma_spinlock); return ret; } //--------------------------------------- bool spi_lobo_dma_chan_free(int dma_chan) { assert( dma_chan == 1 || dma_chan == 2 ); assert( spi_dma_chan_enabled & DMA_CHANNEL_ENABLED(dma_chan) ); portENTER_CRITICAL(&spi_dma_spinlock); spi_dma_chan_enabled &= ~DMA_CHANNEL_ENABLED(dma_chan); if ( spi_dma_chan_enabled == 0 ) { //disable the DMA only when all the channels are freed. periph_module_disable( PERIPH_SPI_DMA_MODULE ); } portEXIT_CRITICAL(&spi_dma_spinlock); return true; } //====================================================================================================== //---------------------------------------------------------------------------------------------------------------- static esp_err_t spi_lobo_bus_initialize(spi_lobo_host_device_t host, spi_lobo_bus_config_t *bus_config, int init) { bool native=true, spi_chan_claimed, dma_chan_claimed; if (init > 0) { /* ToDo: remove this when we have flash operations cooperating with this */ SPI_CHECK(host!=TFT_SPI_HOST, "SPI1 is not supported", ESP_ERR_NOT_SUPPORTED); SPI_CHECK(host>=TFT_SPI_HOST && host<=TFT_VSPI_HOST, "invalid host", ESP_ERR_INVALID_ARG); SPI_CHECK(spihost[host]==NULL, "host already in use", ESP_ERR_INVALID_STATE); } else { SPI_CHECK(spihost[host]!=NULL, "host not in use", ESP_ERR_INVALID_STATE); } SPI_CHECK(bus_config->mosi_io_num<0 || GPIO_IS_VALID_OUTPUT_GPIO(bus_config->mosi_io_num), "spid pin invalid", ESP_ERR_INVALID_ARG); SPI_CHECK(bus_config->sclk_io_num<0 || GPIO_IS_VALID_OUTPUT_GPIO(bus_config->sclk_io_num), "spiclk pin invalid", ESP_ERR_INVALID_ARG); SPI_CHECK(bus_config->miso_io_num<0 || GPIO_IS_VALID_GPIO(bus_config->miso_io_num), "spiq pin invalid", ESP_ERR_INVALID_ARG); SPI_CHECK(bus_config->quadwp_io_num<0 || GPIO_IS_VALID_OUTPUT_GPIO(bus_config->quadwp_io_num), "spiwp pin invalid", ESP_ERR_INVALID_ARG); SPI_CHECK(bus_config->quadhd_io_num<0 || GPIO_IS_VALID_OUTPUT_GPIO(bus_config->quadhd_io_num), "spihd pin invalid", ESP_ERR_INVALID_ARG); if (init > 0) { spi_chan_claimed=spi_lobo_periph_claim(host); SPI_CHECK(spi_chan_claimed, "host already in use", ESP_ERR_INVALID_STATE); //spihost[host]=malloc(sizeof(spi_lobo_host_t)); spihost[host]=heap_caps_malloc(sizeof(spi_lobo_host_t), MALLOC_CAP_DMA); if (spihost[host]==NULL) return ESP_ERR_NO_MEM; memset(spihost[host], 0, sizeof(spi_lobo_host_t)); // Create semaphore spihost[host]->spi_lobo_bus_mutex = xSemaphoreCreateMutex(); if (!spihost[host]->spi_lobo_bus_mutex) return ESP_ERR_NO_MEM; } spihost[host]->cur_device = -1; memcpy(&spihost[host]->cur_bus_config, bus_config, sizeof(spi_lobo_bus_config_t)); //Check if the selected pins correspond to the native pins of the peripheral if (bus_config->mosi_io_num >= 0 && bus_config->mosi_io_num!=io_signal[host].spid_native) native=false; if (bus_config->miso_io_num >= 0 && bus_config->miso_io_num!=io_signal[host].spiq_native) native=false; if (bus_config->sclk_io_num >= 0 && bus_config->sclk_io_num!=io_signal[host].spiclk_native) native=false; if (bus_config->quadwp_io_num >= 0 && bus_config->quadwp_io_num!=io_signal[host].spiwp_native) native=false; if (bus_config->quadhd_io_num >= 0 && bus_config->quadhd_io_num!=io_signal[host].spihd_native) native=false; spihost[host]->no_gpio_matrix=native; if (native) { //All SPI native pin selections resolve to 1, so we put that here instead of trying to figure //out which FUNC_GPIOx_xSPIxx to grab; they all are defined to 1 anyway. if (bus_config->mosi_io_num > 0) PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[bus_config->mosi_io_num], 1); if (bus_config->miso_io_num > 0) PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[bus_config->miso_io_num], 1); if (bus_config->quadwp_io_num > 0) PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[bus_config->quadwp_io_num], 1); if (bus_config->quadhd_io_num > 0) PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[bus_config->quadhd_io_num], 1); if (bus_config->sclk_io_num > 0) PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[bus_config->sclk_io_num], 1); } else { //Use GPIO if (bus_config->mosi_io_num>0) { PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[bus_config->mosi_io_num], PIN_FUNC_GPIO); gpio_set_direction(bus_config->mosi_io_num, GPIO_MODE_OUTPUT); gpio_matrix_out(bus_config->mosi_io_num, io_signal[host].spid_out, false, false); gpio_matrix_in(bus_config->mosi_io_num, io_signal[host].spid_in, false); } if (bus_config->miso_io_num>0) { PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[bus_config->miso_io_num], PIN_FUNC_GPIO); gpio_set_direction(bus_config->miso_io_num, GPIO_MODE_INPUT); gpio_matrix_out(bus_config->miso_io_num, io_signal[host].spiq_out, false, false); gpio_matrix_in(bus_config->miso_io_num, io_signal[host].spiq_in, false); } if (bus_config->quadwp_io_num>0) { PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[bus_config->quadwp_io_num], PIN_FUNC_GPIO); gpio_set_direction(bus_config->quadwp_io_num, GPIO_MODE_OUTPUT); gpio_matrix_out(bus_config->quadwp_io_num, io_signal[host].spiwp_out, false, false); gpio_matrix_in(bus_config->quadwp_io_num, io_signal[host].spiwp_in, false); } if (bus_config->quadhd_io_num>0) { PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[bus_config->quadhd_io_num], PIN_FUNC_GPIO); gpio_set_direction(bus_config->quadhd_io_num, GPIO_MODE_OUTPUT); gpio_matrix_out(bus_config->quadhd_io_num, io_signal[host].spihd_out, false, false); gpio_matrix_in(bus_config->quadhd_io_num, io_signal[host].spihd_in, false); } if (bus_config->sclk_io_num>0) { PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[bus_config->sclk_io_num], PIN_FUNC_GPIO); gpio_set_direction(bus_config->sclk_io_num, GPIO_MODE_OUTPUT); gpio_matrix_out(bus_config->sclk_io_num, io_signal[host].spiclk_out, false, false); } } periph_module_enable(io_signal[host].module); spihost[host]->hw=io_signal[host].hw; if (init > 0) { dma_chan_claimed=spi_lobo_dma_chan_claim(init); if ( !dma_chan_claimed ) { spi_lobo_periph_free( host ); SPI_CHECK(dma_chan_claimed, "dma channel already in use", ESP_ERR_INVALID_STATE); } spihost[host]->dma_chan = init; //See how many dma descriptors we need and allocate them int dma_desc_ct=(bus_config->max_transfer_sz+SPI_MAX_DMA_LEN-1)/SPI_MAX_DMA_LEN; if (dma_desc_ct==0) dma_desc_ct=1; //default to 4k when max is not given spihost[host]->max_transfer_sz = dma_desc_ct*SPI_MAX_DMA_LEN; spihost[host]->dmadesc_tx=heap_caps_malloc(sizeof(lldesc_t)*dma_desc_ct, MALLOC_CAP_DMA); spihost[host]->dmadesc_rx=heap_caps_malloc(sizeof(lldesc_t)*dma_desc_ct, MALLOC_CAP_DMA); if (!spihost[host]->dmadesc_tx || !spihost[host]->dmadesc_rx) goto nomem; //Tell common code DMA workaround that our DMA channel is idle. If needed, the code will do a DMA reset. spi_lobo_dmaworkaround_idle(spihost[host]->dma_chan); // Reset DMA spihost[host]->hw->dma_conf.val |= SPI_OUT_RST|SPI_IN_RST|SPI_AHBM_RST|SPI_AHBM_FIFO_RST; spihost[host]->hw->dma_out_link.start=0; spihost[host]->hw->dma_in_link.start=0; spihost[host]->hw->dma_conf.val &= ~(SPI_OUT_RST|SPI_IN_RST|SPI_AHBM_RST|SPI_AHBM_FIFO_RST); spihost[host]->hw->dma_conf.out_data_burst_en=1; //Reset timing spihost[host]->hw->ctrl2.val=0; //Disable unneeded ints spihost[host]->hw->slave.rd_buf_done=0; spihost[host]->hw->slave.wr_buf_done=0; spihost[host]->hw->slave.rd_sta_done=0; spihost[host]->hw->slave.wr_sta_done=0; spihost[host]->hw->slave.rd_buf_inten=0; spihost[host]->hw->slave.wr_buf_inten=0; spihost[host]->hw->slave.rd_sta_inten=0; spihost[host]->hw->slave.wr_sta_inten=0; //Force a transaction done interrupt. This interrupt won't fire yet because we initialized the SPI interrupt as //disabled. This way, we can just enable the SPI interrupt and the interrupt handler will kick in, handling //any transactions that are queued. spihost[host]->hw->slave.trans_inten=1; spihost[host]->hw->slave.trans_done=1; //Select DMA channel. DPORT_SET_PERI_REG_BITS(DPORT_SPI_DMA_CHAN_SEL_REG, 3, init, (host * 2)); } return ESP_OK; nomem: if (spihost[host]) { free(spihost[host]->dmadesc_tx); free(spihost[host]->dmadesc_rx); } free(spihost[host]); spi_lobo_periph_free(host); return ESP_ERR_NO_MEM; } //--------------------------------------------------------------------------- static esp_err_t spi_lobo_bus_free(spi_lobo_host_device_t host, int dofree) { if ((host == TFT_SPI_HOST) || (host > TFT_VSPI_HOST)) return ESP_ERR_NOT_SUPPORTED; // invalid host if (spihost[host] == NULL) return ESP_ERR_INVALID_STATE; // host not in use if (dofree) { for (int x=0; xdevice[x] != NULL) return ESP_ERR_INVALID_STATE; // not all devices freed } } if ( spihost[host]->dma_chan > 0 ) { spi_lobo_dma_chan_free ( spihost[host]->dma_chan ); } spihost[host]->hw->slave.trans_inten=0; spihost[host]->hw->slave.trans_done=0; spi_lobo_periph_free(host); if (dofree) { vSemaphoreDelete(spihost[host]->spi_lobo_bus_mutex); free(spihost[host]->dmadesc_tx); free(spihost[host]->dmadesc_rx); free(spihost[host]); spihost[host] = NULL; } return ESP_OK; } //--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- esp_err_t spi_lobo_bus_add_device(spi_lobo_host_device_t host, spi_lobo_bus_config_t *bus_config, spi_lobo_device_interface_config_t *dev_config, spi_lobo_device_handle_t *handle) { if ((host == TFT_SPI_HOST) || (host > TFT_VSPI_HOST)) return ESP_ERR_NOT_SUPPORTED; // invalid host if (spihost[host] == NULL) { esp_err_t ret = spi_lobo_bus_initialize(host, bus_config, 1); if (ret) return ret; } int freecs, maxdev; int apbclk=APB_CLK_FREQ; if (spihost[host] == NULL) return ESP_ERR_INVALID_STATE; if (dev_config->spics_io_num >= 0) { if (!GPIO_IS_VALID_OUTPUT_GPIO(dev_config->spics_io_num)) return ESP_ERR_INVALID_ARG; if (dev_config->spics_ext_io_num > 0) dev_config->spics_ext_io_num = -1; } else { //if ((dev_config->spics_ext_io_num <= 0) || (!GPIO_IS_VALID_OUTPUT_GPIO(dev_config->spics_ext_io_num))) return ESP_ERR_INVALID_ARG; } //ToDo: Check if some other device uses the same 'spics_ext_io_num' if (dev_config->clock_speed_hz == 0) return ESP_ERR_INVALID_ARG; if (dev_config->spics_io_num > 0) maxdev = NO_CS; else maxdev = NO_DEV; for (freecs=0; freecsdevice[freecs], NULL, (spi_lobo_device_t *)1)) break; } if (freecs == maxdev) return ESP_ERR_NOT_FOUND; // The hardware looks like it would support this, but actually setting cs_ena_pretrans when transferring in full // duplex mode does absolutely nothing on the ESP32. if ((dev_config->cs_ena_pretrans != 0) && (dev_config->flags & LB_SPI_DEVICE_HALFDUPLEX)) return ESP_ERR_INVALID_ARG; // Speeds >=40MHz over GPIO matrix needs a dummy cycle, but these don't work for full-duplex connections. if (((dev_config->flags & LB_SPI_DEVICE_HALFDUPLEX)==0) && (dev_config->clock_speed_hz > ((apbclk*2)/5)) && (!spihost[host]->no_gpio_matrix)) return ESP_ERR_INVALID_ARG; //Allocate memory for device spi_lobo_device_t *dev=malloc(sizeof(spi_lobo_device_t)); if (dev==NULL) return ESP_ERR_NO_MEM; memset(dev, 0, sizeof(spi_lobo_device_t)); spihost[host]->device[freecs]=dev; if (dev_config->duty_cycle_pos==0) dev_config->duty_cycle_pos=128; dev->host=spihost[host]; dev->host_dev = host; //We want to save a copy of the dev config in the dev struct. memcpy(&dev->cfg, dev_config, sizeof(spi_lobo_device_interface_config_t)); //We want to save a copy of the bus config in the dev struct. memcpy(&dev->bus_config, bus_config, sizeof(spi_lobo_bus_config_t)); //Set CS pin, CS options if (dev_config->spics_io_num > 0) { if (spihost[host]->no_gpio_matrix &&dev_config->spics_io_num == io_signal[host].spics0_native && freecs==0) { //Again, the cs0s for all SPI peripherals map to pin mux source 1, so we use that instead of a define. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[dev_config->spics_io_num], 1); } else { //Use GPIO matrix PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[dev_config->spics_io_num], PIN_FUNC_GPIO); gpio_set_direction(dev_config->spics_io_num, GPIO_MODE_OUTPUT); gpio_matrix_out(dev_config->spics_io_num, io_signal[host].spics_out[freecs], false, false); } } else if (dev_config->spics_ext_io_num >= 0) { gpio_set_direction(dev_config->spics_ext_io_num, GPIO_MODE_OUTPUT); gpio_set_level(dev_config->spics_ext_io_num, 1); } if (dev_config->flags & LB_SPI_DEVICE_CLK_AS_CS) { spihost[host]->hw->pin.master_ck_sel |= (1<hw->pin.master_ck_sel &= (1<flags & LB_SPI_DEVICE_POSITIVE_CS) { spihost[host]->hw->pin.master_cs_pol |= (1<hw->pin.master_cs_pol &= (1<host->device[x] == handle) handle->host->device[x]=NULL; } // Check if all devices are removed from this host and free the bus if yes for (x=0; xhost_dev]->device[x] !=NULL) break; } if (x == NO_DEV) { free(handle); spi_lobo_bus_free(handle->host_dev, 1); } else free(handle); return ESP_OK; } //----------------------------------------------------------------- static int IRAM_ATTR spi_freq_for_pre_n(int fapb, int pre, int n) { return (fapb / (pre * n)); } /* * Set the SPI clock to a certain frequency. Returns the effective frequency set, which may be slightly * different from the requested frequency. */ //----------------------------------------------------------------------------------- static int IRAM_ATTR spi_set_clock(spi_dev_t *hw, int fapb, int hz, int duty_cycle) { int pre, n, h, l, eff_clk; //In hw, n, h and l are 1-64, pre is 1-8K. Value written to register is one lower than used value. if (hz>((fapb/4)*3)) { //Using Fapb directly will give us the best result here. hw->clock.clkcnt_l=0; hw->clock.clkcnt_h=0; hw->clock.clkcnt_n=0; hw->clock.clkdiv_pre=0; hw->clock.clk_equ_sysclk=1; eff_clk=fapb; } else { //For best duty cycle resolution, we want n to be as close to 32 as possible, but //we also need a pre/n combo that gets us as close as possible to the intended freq. //To do this, we bruteforce n and calculate the best pre to go along with that. //If there's a choice between pre/n combos that give the same result, use the one //with the higher n. int bestn=-1; int bestpre=-1; int besterr=0; int errval; for (n=1; n<=64; n++) { //Effectively, this does pre=round((fapb/n)/hz). pre=((fapb/n)+(hz/2))/hz; if (pre<=0) pre=1; if (pre>8192) pre=8192; errval=abs(spi_freq_for_pre_n(fapb, pre, n)-hz); if (bestn==-1 || errval<=besterr) { besterr=errval; bestn=n; bestpre=pre; } } n=bestn; pre=bestpre; l=n; //This effectively does round((duty_cycle*n)/256) h=(duty_cycle*n+127)/256; if (h<=0) h=1; hw->clock.clk_equ_sysclk=0; hw->clock.clkcnt_n=n-1; hw->clock.clkdiv_pre=pre-1; hw->clock.clkcnt_h=h-1; hw->clock.clkcnt_l=l-1; eff_clk=spi_freq_for_pre_n(fapb, pre, n); } return eff_clk; } //------------------------------------------------------------------------------------ esp_err_t IRAM_ATTR spi_lobo_device_select(spi_lobo_device_handle_t handle, int force) { if (handle == NULL) return ESP_ERR_INVALID_ARG; if ((handle->cfg.selected == 1) && (!force)) return ESP_OK; // already selected int i; spi_lobo_host_t *host=(spi_lobo_host_t*)handle->host; // find device's host bus for (i=0; idevice[i] == handle) break; } if (i == NO_DEV) return ESP_ERR_INVALID_ARG; if (!(xSemaphoreTake(host->spi_lobo_bus_mutex, SPI_SEMAPHORE_WAIT))) return ESP_ERR_INVALID_STATE; // Check if previously used device's bus device is the same if (memcmp(&host->cur_bus_config, &handle->bus_config, sizeof(spi_lobo_bus_config_t)) != 0) { // device has different bus configuration, we need to reconfigure the bus esp_err_t err = spi_lobo_bus_free(1, 0); if (err) { xSemaphoreGive(host->spi_lobo_bus_mutex); return err; } err = spi_lobo_bus_initialize(i, &handle->bus_config, -1); if (err) { xSemaphoreGive(host->spi_lobo_bus_mutex); return err; } } //Reconfigure according to device settings, but only if the device changed or forced. if ((force) || (host->device[host->cur_device] != handle)) { //Assumes a hardcoded 80MHz Fapb for now. ToDo: figure out something better once we have clock scaling working. int apbclk=APB_CLK_FREQ; //Speeds >=40MHz over GPIO matrix needs a dummy cycle, but these don't work for full-duplex connections. if (((handle->cfg.flags & LB_SPI_DEVICE_HALFDUPLEX) == 0) && (handle->cfg.clock_speed_hz > ((apbclk*2)/5)) && (!host->no_gpio_matrix)) { // set speed to 32 MHz handle->cfg.clock_speed_hz = (apbclk*2)/5; } int effclk=spi_set_clock(host->hw, apbclk, handle->cfg.clock_speed_hz, handle->cfg.duty_cycle_pos); //Configure bit order host->hw->ctrl.rd_bit_order=(handle->cfg.flags & LB_SPI_DEVICE_RXBIT_LSBFIRST)?1:0; host->hw->ctrl.wr_bit_order=(handle->cfg.flags & LB_SPI_DEVICE_TXBIT_LSBFIRST)?1:0; //Configure polarity //SPI iface needs to be configured for a delay in some cases. int nodelay=0; int extra_dummy=0; if (host->no_gpio_matrix) { if (effclk >= apbclk/2) { nodelay=1; } } else { if (effclk >= apbclk/2) { nodelay=1; extra_dummy=1; //Note: This only works on half-duplex connections. spi_lobo_bus_add_device checks for this. } else if (effclk >= apbclk/4) { nodelay=1; } } if (handle->cfg.mode==0) { host->hw->pin.ck_idle_edge=0; host->hw->user.ck_out_edge=0; host->hw->ctrl2.miso_delay_mode=nodelay?0:2; } else if (handle->cfg.mode==1) { host->hw->pin.ck_idle_edge=0; host->hw->user.ck_out_edge=1; host->hw->ctrl2.miso_delay_mode=nodelay?0:1; } else if (handle->cfg.mode==2) { host->hw->pin.ck_idle_edge=1; host->hw->user.ck_out_edge=1; host->hw->ctrl2.miso_delay_mode=nodelay?0:1; } else if (handle->cfg.mode==3) { host->hw->pin.ck_idle_edge=1; host->hw->user.ck_out_edge=0; host->hw->ctrl2.miso_delay_mode=nodelay?0:2; } //Configure bit sizes, load addr and command host->hw->user.usr_dummy=(handle->cfg.dummy_bits+extra_dummy)?1:0; host->hw->user.usr_addr=(handle->cfg.address_bits)?1:0; host->hw->user.usr_command=(handle->cfg.command_bits)?1:0; host->hw->user1.usr_addr_bitlen=handle->cfg.address_bits-1; host->hw->user1.usr_dummy_cyclelen=handle->cfg.dummy_bits+extra_dummy-1; host->hw->user2.usr_command_bitlen=handle->cfg.command_bits-1; //Configure misc stuff host->hw->user.doutdin=(handle->cfg.flags & LB_SPI_DEVICE_HALFDUPLEX)?0:1; host->hw->user.sio=(handle->cfg.flags & LB_SPI_DEVICE_3WIRE)?1:0; host->hw->ctrl2.setup_time=handle->cfg.cs_ena_pretrans-1; host->hw->user.cs_setup=handle->cfg.cs_ena_pretrans?1:0; host->hw->ctrl2.hold_time=handle->cfg.cs_ena_posttrans-1; host->hw->user.cs_hold=(handle->cfg.cs_ena_posttrans)?1:0; //Configure CS pin host->hw->pin.cs0_dis=(i==0)?0:1; host->hw->pin.cs1_dis=(i==1)?0:1; host->hw->pin.cs2_dis=(i==2)?0:1; host->cur_device = i; } if ((handle->cfg.spics_io_num < 0) && (handle->cfg.spics_ext_io_num > 0)) { gpio_set_level(handle->cfg.spics_ext_io_num, 0); } handle->cfg.selected = 1; return ESP_OK; } //--------------------------------------------------------------------------- esp_err_t IRAM_ATTR spi_lobo_device_deselect(spi_lobo_device_handle_t handle) { if (handle == NULL) return ESP_ERR_INVALID_ARG; if (handle->cfg.selected == 0) return ESP_OK; // already deselected int i; spi_lobo_host_t *host=(spi_lobo_host_t*)handle->host; for (i=0; idevice[i] == handle) break; } if (i == NO_DEV) return ESP_ERR_INVALID_ARG; if (host->device[host->cur_device] == handle) { if ((handle->cfg.spics_io_num < 0) && (handle->cfg.spics_ext_io_num > 0)) { gpio_set_level(handle->cfg.spics_ext_io_num, 1); } } handle->cfg.selected = 0; xSemaphoreGive(host->spi_lobo_bus_mutex); return ESP_OK; } //-------------------------------------------------------------------------------- esp_err_t IRAM_ATTR spi_lobo_device_TakeSemaphore(spi_lobo_device_handle_t handle) { if (!(xSemaphoreTake(handle->host->spi_lobo_bus_mutex, SPI_SEMAPHORE_WAIT))) return ESP_ERR_INVALID_STATE; else return ESP_OK; } //--------------------------------------------------------------------------- void IRAM_ATTR spi_lobo_device_GiveSemaphore(spi_lobo_device_handle_t handle) { xSemaphoreTake(handle->host->spi_lobo_bus_mutex, portMAX_DELAY); } //---------------------------------------------------------- uint32_t spi_lobo_get_speed(spi_lobo_device_handle_t handle) { spi_lobo_host_t *host=(spi_lobo_host_t*)handle->host; uint32_t speed = 0; if (spi_lobo_device_select(handle, 0) == ESP_OK) { if (host->hw->clock.clk_equ_sysclk == 1) speed = 80000000; else speed = 80000000/(host->hw->clock.clkdiv_pre+1)/(host->hw->clock.clkcnt_n+1); } spi_lobo_device_deselect(handle); return speed; } //-------------------------------------------------------------------------- uint32_t spi_lobo_set_speed(spi_lobo_device_handle_t handle, uint32_t speed) { spi_lobo_host_t *host=(spi_lobo_host_t*)handle->host; uint32_t newspeed = 0; if (spi_lobo_device_select(handle, 0) == ESP_OK) { spi_lobo_device_deselect(handle); handle->cfg.clock_speed_hz = speed; if (spi_lobo_device_select(handle, 1) == ESP_OK) { if (host->hw->clock.clk_equ_sysclk == 1) newspeed = 80000000; else newspeed = 80000000/(host->hw->clock.clkdiv_pre+1)/(host->hw->clock.clkcnt_n+1); } } spi_lobo_device_deselect(handle); return newspeed; } //------------------------------------------------------------- bool spi_lobo_uses_native_pins(spi_lobo_device_handle_t handle) { return handle->host->no_gpio_matrix; } //------------------------------------------------------------------- void spi_lobo_get_native_pins(int host, int *sdi, int *sdo, int *sck) { *sdo = io_signal[host].spid_native; *sdi = io_signal[host].spiq_native; *sck = io_signal[host].spiclk_native; } /* When using 'spi_lobo_transfer_data' function we can have several scenarios: A: Send only (trans->rxlength = 0) B: Receive only (trans->txlength = 0) C: Send & receive (trans->txlength > 0 & trans->rxlength > 0) D: No operation (trans->txlength = 0 & trans->rxlength = 0) */ //---------------------------------------------------------------------------------------------------------- esp_err_t IRAM_ATTR spi_lobo_transfer_data(spi_lobo_device_handle_t handle, spi_lobo_transaction_t *trans) { if (!handle) return ESP_ERR_INVALID_ARG; // *** For now we can only handle 8-bit bytes transmission if (((trans->length % 8) != 0) || ((trans->rxlength % 8) != 0)) return ESP_ERR_INVALID_ARG; spi_lobo_host_t *host=(spi_lobo_host_t*)handle->host; esp_err_t ret; uint8_t do_deselect = 0; const uint8_t *txbuffer = NULL; uint8_t *rxbuffer = NULL; if (trans->flags & LB_SPI_TRANS_USE_TXDATA) { // Send data from 'trans->tx_data' txbuffer=(uint8_t*)&trans->tx_data[0]; } else { // Send data from 'trans->tx_buffer' txbuffer=(uint8_t*)trans->tx_buffer; } if (trans->flags & LB_SPI_TRANS_USE_RXDATA) { // Receive data to 'trans->rx_data' rxbuffer=(uint8_t*)&trans->rx_data[0]; } else { // Receive data to 'trans->rx_buffer' rxbuffer=(uint8_t*)trans->rx_buffer; } // ** Set transmit & receive length in bytes uint32_t txlen = trans->length / 8; uint32_t rxlen = trans->rxlength / 8; if (txbuffer == NULL) txlen = 0; if (rxbuffer == NULL) rxlen = 0; if ((rxlen == 0) && (txlen == 0)) { // ** NOTHING TO SEND or RECEIVE, return return ESP_ERR_INVALID_ARG; } // If using 'trans->tx_data' and/or 'trans->rx_data', maximum 4 bytes can be sent/received if ((txbuffer == &trans->tx_data[0]) && (txlen > 4)) return ESP_ERR_INVALID_ARG; if ((rxbuffer == &trans->rx_data[0]) && (rxlen > 4)) return ESP_ERR_INVALID_ARG; // --- Wait for SPI bus ready --- while (host->hw->cmd.usr); // ** If the device was not selected, select it if (handle->cfg.selected == 0) { ret = spi_lobo_device_select(handle, 0); if (ret) return ret; do_deselect = 1; // We will deselect the device after the operation ! } // ** Call pre-transmission callback, if any if (handle->cfg.pre_cb) handle->cfg.pre_cb(trans); // Test if operating in full duplex mode uint8_t duplex = 1; if (handle->cfg.flags & LB_SPI_DEVICE_HALFDUPLEX) duplex = 0; // Half duplex mode ! uint32_t bits, rdbits; uint32_t wd; uint8_t bc, rdidx; uint32_t rdcount = rxlen; // Total number of bytes to read uint32_t count = 0; // number of bytes transmitted uint32_t rd_read = 0; // Number of bytes read so far host->hw->user.usr_mosi_highpart = 0; // use the whole spi buffer // ** Check if address phase will be used host->hw->user2.usr_command_value=trans->command; if (handle->cfg.address_bits>32) { host->hw->addr=trans->address >> 32; host->hw->slv_wr_status=trans->address & 0xffffffff; } else { host->hw->addr=trans->address & 0xffffffff; } // Check if we have to transmit some data if (txlen > 0) { host->hw->user.usr_mosi = 1; uint8_t idx; bits = 0; // remaining bits to send idx = 0; // index to spi hw data_buf (16 32-bit words, 64 bytes, 512 bits) // ** Transmit 'txlen' bytes while (count < txlen) { wd = 0; for (bc=0;bc<32;bc+=8) { wd |= (uint32_t)txbuffer[count] << bc; count++; // Increment sent data count bits += 8; // Increment bits count if (count == txlen) break; // If all transmit data pushed to hw spi buffer break from the loop } host->hw->data_buf[idx] = wd; idx++; if (idx == 16) { // hw SPI buffer full (all 64 bytes filled, START THE TRANSSACTION host->hw->mosi_dlen.usr_mosi_dbitlen=bits-1; // Set mosi dbitlen if ((duplex) && (rdcount > 0)) { // In full duplex mode we are receiving while sending ! host->hw->miso_dlen.usr_miso_dbitlen = bits-1; // Set miso dbitlen host->hw->user.usr_miso = 1; } else { host->hw->miso_dlen.usr_miso_dbitlen = 0; // In half duplex mode nothing will be received host->hw->user.usr_miso = 0; } // ** Start the transaction *** host->hw->cmd.usr=1; // Wait the transaction to finish while (host->hw->cmd.usr); if ((duplex) && (rdcount > 0)) { // *** in full duplex mode transfer received data to input buffer *** rdidx = 0; while (bits > 0) { wd = host->hw->data_buf[rdidx]; rdidx++; for (bc=0;bc<32;bc+=8) { // get max 4 bytes rxbuffer[rd_read++] = (uint8_t)((wd >> bc) & 0xFF); rdcount--; bits -= 8; if (rdcount == 0) { bits = 0; break; // Finished reading data } } } } bits = 0; // nothing in hw spi buffer yet idx = 0; // start from the beginning of the hw spi buffer } } // *** All transmit data are sent or pushed to hw spi buffer // bits > 0 IF THERE ARE SOME DATA STILL WAITING IN THE HW SPI TRANSMIT BUFFER if (bits > 0) { // ** WE HAVE SOME DATA IN THE HW SPI TRANSMIT BUFFER host->hw->mosi_dlen.usr_mosi_dbitlen = bits-1; // Set mosi dbitlen if ((duplex) && (rdcount > 0)) { // In full duplex mode we are receiving while sending ! host->hw->miso_dlen.usr_miso_dbitlen = bits-1; // Set miso dbitlen host->hw->user.usr_miso = 1; } else { host->hw->miso_dlen.usr_miso_dbitlen = 0; // In half duplex mode nothing will be received host->hw->user.usr_miso = 0; } // ** Start the transaction *** host->hw->cmd.usr=1; // Wait the transaction to finish while (host->hw->cmd.usr); if ((duplex) && (rdcount > 0)) { // *** in full duplex mode transfer received data to input buffer *** rdidx = 0; while (bits > 0) { wd = host->hw->data_buf[rdidx]; rdidx++; for (bc=0;bc<32;bc+=8) { // get max 4 bytes rxbuffer[rd_read++] = (uint8_t)((wd >> bc) & 0xFF); rdcount--; bits -= 8; if (bits == 0) break; if (rdcount == 0) { bits = 0; break; // Finished reading data } } } } } //if (duplex) rdcount = 0; // In duplex mode receive only as many bytes as was transmitted } // ------------------------------------------------------------------------ // *** If rdcount = 0 we have nothing to receive and we exit the function // This is true if no data receive was requested, // or all the data was received in Full duplex mode during the transmission // ------------------------------------------------------------------------ if (rdcount > 0) { // ---------------------------------------------------------------------------------------------------------------- // *** rdcount > 0, we have to receive some data // This is true if we operate in Half duplex mode when receiving after transmission is done, // or not all data was received in Full duplex mode during the transmission (trans->rxlength > trans->txlength) // ---------------------------------------------------------------------------------------------------------------- host->hw->user.usr_mosi = 0; // do not send host->hw->user.usr_miso = 1; // do receive while (rdcount > 0) { if (rdcount <= 64) rdbits = rdcount * 8; else rdbits = 64 * 8; // Load receive buffer host->hw->mosi_dlen.usr_mosi_dbitlen=0; host->hw->miso_dlen.usr_miso_dbitlen=rdbits-1; // ** Start the transaction *** host->hw->cmd.usr=1; // Wait the transaction to finish while (host->hw->cmd.usr); // *** transfer received data to input buffer *** rdidx = 0; while (rdbits > 0) { wd = host->hw->data_buf[rdidx]; rdidx++; for (bc=0;bc<32;bc+=8) { rxbuffer[rd_read++] = (uint8_t)((wd >> bc) & 0xFF); rdcount--; rdbits -= 8; if (rdcount == 0) { rdbits = 0; break; } } } } } // ** Call post-transmission callback, if any if (handle->cfg.post_cb) handle->cfg.post_cb(trans); if (do_deselect) { // Spi device was selected in this function, we have to deselect it now ret = spi_lobo_device_deselect(handle); if (ret) return ret; } return ESP_OK; }