1138 lines
44 KiB
C
1138 lines
44 KiB
C
|
// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
|
||
|
//
|
||
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
// you may not use this file except in compliance with the License.
|
||
|
// You may obtain a copy of the License at
|
||
|
|
||
|
// http://www.apache.org/licenses/LICENSE-2.0
|
||
|
//
|
||
|
// Unless required by applicable law or agreed to in writing, software
|
||
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
// See the License for the specific language governing permissions and
|
||
|
// limitations under the License.
|
||
|
|
||
|
|
||
|
/*
|
||
|
----------------------------------------
|
||
|
Non DMA version of the spi_master driver
|
||
|
----------------------------------------
|
||
|
------------------------------------------------------------------------------------
|
||
|
Based on esp-idf 'spi_master', modified by LoBo (https://github.com/loboris) 03/2017
|
||
|
------------------------------------------------------------------------------------
|
||
|
|
||
|
* Transfers data to SPI device in direct mode, not using DMA
|
||
|
* All configuration options (bus, device, transaction) are the same as in spi_master driver
|
||
|
* Transfers uses the semaphore (taken in select function & given in deselect function) to protect the transfer
|
||
|
* Number of the devices attached to the bus which uses hardware CS can be 3 ('NO_CS')
|
||
|
* Additional devices which uses software CS can be attached to the bus, up to 'NO_DEV'
|
||
|
* 'spi_bus_initialize' & 'spi_bus_remove' functions are removed, spi bus is initiated/removed in spi_lobo_bus_add_device/spi_lobo_bus_remove_device when needed
|
||
|
* 'spi_lobo_bus_add_device' function has added parameter 'bus_config' and automatically initializes spi bus device if not already initialized
|
||
|
* 'spi_lobo_bus_remove_device' automatically removes spi bus device if no other devices are attached to it.
|
||
|
* Devices can have individual bus_configs, so different mosi, miso, sck pins can be configured for each device
|
||
|
Reconfiguring the bus is done automaticaly in 'spi_lobo_device_select' function
|
||
|
* 'spi_lobo_device_select' & 'spi_lobo_device_deselect' functions handles devices configuration changes and software CS
|
||
|
* Some helper functions are added ('spi_lobo_get_speed', 'spi_lobo_set_speed', ...)
|
||
|
* All structures are available in header file for easy creation of user low level spi functions. See **tftfunc.c** source for examples.
|
||
|
* Transimt and receive lenghts are limited only by available memory
|
||
|
|
||
|
|
||
|
Main driver's function is 'spi_lobo_transfer_data()'
|
||
|
|
||
|
* TRANSMIT 8-bit data to spi device from 'trans->tx_buffer' or 'trans->tx_data' (trans->lenght/8 bytes)
|
||
|
* and RECEIVE data to 'trans->rx_buffer' or 'trans->rx_data' (trans->rx_length/8 bytes)
|
||
|
* Lengths must be 8-bit multiples!
|
||
|
* If trans->rx_buffer is NULL or trans->rx_length is 0, only transmits data
|
||
|
* If trans->tx_buffer is NULL or trans->length is 0, only receives data
|
||
|
* If the device is in duplex mode (LB_SPI_DEVICE_HALFDUPLEX flag NOT set), data are transmitted and received simultaneously.
|
||
|
* If the device is in half duplex mode (LB_SPI_DEVICE_HALFDUPLEX flag IS set), data are received after transmission
|
||
|
* 'address', 'command' and 'dummy bits' are transmitted before data phase IF set in device's configuration
|
||
|
* and IF 'trans->length' and 'trans->rx_length' are NOT both 0
|
||
|
* If configured, devices 'pre_cb' callback is called before and 'post_cb' after the transmission
|
||
|
* If device was not previously selected, it will be selected before transmission and deselected after transmission.
|
||
|
|
||
|
*/
|
||
|
|
||
|
/*
|
||
|
Replace this include with
|
||
|
#include "driver/spi_master_lobo.h"
|
||
|
if the driver is located in esp-isf/components
|
||
|
*/
|
||
|
#include "freertos/FreeRTOS.h"
|
||
|
#include <string.h>
|
||
|
#include "soc/spi_reg.h"
|
||
|
#include "soc/dport_reg.h"
|
||
|
#include "esp_log.h"
|
||
|
#include "freertos/semphr.h"
|
||
|
#include "driver/uart.h"
|
||
|
#include "driver/gpio.h"
|
||
|
#include "spi_master_lobo.h"
|
||
|
#include "driver/periph_ctrl.h"
|
||
|
|
||
|
static spi_lobo_host_t *spihost[3] = {NULL};
|
||
|
|
||
|
|
||
|
static const char *SPI_TAG = "spi_lobo_master";
|
||
|
#define SPI_CHECK(a, str, ret_val) \
|
||
|
if (!(a)) { \
|
||
|
ESP_LOGE(SPI_TAG,"%s(%d): %s", __FUNCTION__, __LINE__, str); \
|
||
|
return (ret_val); \
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
Stores a bunch of per-spi-peripheral data.
|
||
|
*/
|
||
|
typedef struct {
|
||
|
const uint8_t spiclk_out; //GPIO mux output signals
|
||
|
const uint8_t spid_out;
|
||
|
const uint8_t spiq_out;
|
||
|
const uint8_t spiwp_out;
|
||
|
const uint8_t spihd_out;
|
||
|
const uint8_t spid_in; //GPIO mux input signals
|
||
|
const uint8_t spiq_in;
|
||
|
const uint8_t spiwp_in;
|
||
|
const uint8_t spihd_in;
|
||
|
const uint8_t spics_out[3]; // /CS GPIO output mux signals
|
||
|
const uint8_t spiclk_native; //IO pins of IO_MUX muxed signals
|
||
|
const uint8_t spid_native;
|
||
|
const uint8_t spiq_native;
|
||
|
const uint8_t spiwp_native;
|
||
|
const uint8_t spihd_native;
|
||
|
const uint8_t spics0_native;
|
||
|
const uint8_t irq; //irq source for interrupt mux
|
||
|
const uint8_t irq_dma; //dma irq source for interrupt mux
|
||
|
const periph_module_t module; //peripheral module, for enabling clock etc
|
||
|
spi_dev_t *hw; //Pointer to the hardware registers
|
||
|
} spi_signal_conn_t;
|
||
|
|
||
|
/*
|
||
|
Bunch of constants for every SPI peripheral: GPIO signals, irqs, hw addr of registers etc
|
||
|
*/
|
||
|
static const spi_signal_conn_t io_signal[3]={
|
||
|
{
|
||
|
.spiclk_out=SPICLK_OUT_IDX,
|
||
|
.spid_out=SPID_OUT_IDX,
|
||
|
.spiq_out=SPIQ_OUT_IDX,
|
||
|
.spiwp_out=SPIWP_OUT_IDX,
|
||
|
.spihd_out=SPIHD_OUT_IDX,
|
||
|
.spid_in=SPID_IN_IDX,
|
||
|
.spiq_in=SPIQ_IN_IDX,
|
||
|
.spiwp_in=SPIWP_IN_IDX,
|
||
|
.spihd_in=SPIHD_IN_IDX,
|
||
|
.spics_out={SPICS0_OUT_IDX, SPICS1_OUT_IDX, SPICS2_OUT_IDX},
|
||
|
.spiclk_native=6,
|
||
|
.spid_native=8,
|
||
|
.spiq_native=7,
|
||
|
.spiwp_native=10,
|
||
|
.spihd_native=9,
|
||
|
.spics0_native=11,
|
||
|
.irq=ETS_SPI1_INTR_SOURCE,
|
||
|
.irq_dma=ETS_SPI1_DMA_INTR_SOURCE,
|
||
|
.module=PERIPH_SPI_MODULE,
|
||
|
.hw=&SPI1
|
||
|
}, {
|
||
|
.spiclk_out=HSPICLK_OUT_IDX,
|
||
|
.spid_out=HSPID_OUT_IDX,
|
||
|
.spiq_out=HSPIQ_OUT_IDX,
|
||
|
.spiwp_out=HSPIWP_OUT_IDX,
|
||
|
.spihd_out=HSPIHD_OUT_IDX,
|
||
|
.spid_in=HSPID_IN_IDX,
|
||
|
.spiq_in=HSPIQ_IN_IDX,
|
||
|
.spiwp_in=HSPIWP_IN_IDX,
|
||
|
.spihd_in=HSPIHD_IN_IDX,
|
||
|
.spics_out={HSPICS0_OUT_IDX, HSPICS1_OUT_IDX, HSPICS2_OUT_IDX},
|
||
|
.spiclk_native=14,
|
||
|
.spid_native=13,
|
||
|
.spiq_native=12,
|
||
|
.spiwp_native=2,
|
||
|
.spihd_native=4,
|
||
|
.spics0_native=15,
|
||
|
.irq=ETS_SPI2_INTR_SOURCE,
|
||
|
.irq_dma=ETS_SPI2_DMA_INTR_SOURCE,
|
||
|
.module=PERIPH_HSPI_MODULE,
|
||
|
.hw=&SPI2
|
||
|
}, {
|
||
|
.spiclk_out=VSPICLK_OUT_IDX,
|
||
|
.spid_out=VSPID_OUT_IDX,
|
||
|
.spiq_out=VSPIQ_OUT_IDX,
|
||
|
.spiwp_out=VSPIWP_OUT_IDX,
|
||
|
.spihd_out=VSPIHD_OUT_IDX,
|
||
|
.spid_in=VSPID_IN_IDX,
|
||
|
.spiq_in=VSPIQ_IN_IDX,
|
||
|
.spiwp_in=VSPIWP_IN_IDX,
|
||
|
.spihd_in=VSPIHD_IN_IDX,
|
||
|
.spics_out={VSPICS0_OUT_IDX, VSPICS1_OUT_IDX, VSPICS2_OUT_IDX},
|
||
|
.spiclk_native=18,
|
||
|
.spid_native=23,
|
||
|
.spiq_native=19,
|
||
|
.spiwp_native=22,
|
||
|
.spihd_native=21,
|
||
|
.spics0_native=5,
|
||
|
.irq=ETS_SPI3_INTR_SOURCE,
|
||
|
.irq_dma=ETS_SPI3_DMA_INTR_SOURCE,
|
||
|
.module=PERIPH_VSPI_MODULE,
|
||
|
.hw=&SPI3
|
||
|
}
|
||
|
};
|
||
|
|
||
|
|
||
|
//======================================================================================================
|
||
|
|
||
|
#define DMA_CHANNEL_ENABLED(dma_chan) (BIT(dma_chan-1))
|
||
|
|
||
|
typedef void(*dmaworkaround_cb_t)(void *arg);
|
||
|
|
||
|
//Set up a list of dma descriptors. dmadesc is an array of descriptors. Data is the buffer to point to.
|
||
|
//--------------------------------------------------------------------------------------------
|
||
|
void spi_lobo_setup_dma_desc_links(lldesc_t *dmadesc, int len, const uint8_t *data, bool isrx)
|
||
|
{
|
||
|
int n = 0;
|
||
|
while (len) {
|
||
|
int dmachunklen = len;
|
||
|
if (dmachunklen > SPI_MAX_DMA_LEN) dmachunklen = SPI_MAX_DMA_LEN;
|
||
|
if (isrx) {
|
||
|
//Receive needs DMA length rounded to next 32-bit boundary
|
||
|
dmadesc[n].size = (dmachunklen + 3) & (~3);
|
||
|
dmadesc[n].length = (dmachunklen + 3) & (~3);
|
||
|
} else {
|
||
|
dmadesc[n].size = dmachunklen;
|
||
|
dmadesc[n].length = dmachunklen;
|
||
|
}
|
||
|
dmadesc[n].buf = (uint8_t *)data;
|
||
|
dmadesc[n].eof = 0;
|
||
|
dmadesc[n].sosf = 0;
|
||
|
dmadesc[n].owner = 1;
|
||
|
dmadesc[n].qe.stqe_next = &dmadesc[n + 1];
|
||
|
len -= dmachunklen;
|
||
|
data += dmachunklen;
|
||
|
n++;
|
||
|
}
|
||
|
dmadesc[n - 1].eof = 1; //Mark last DMA desc as end of stream.
|
||
|
dmadesc[n - 1].qe.stqe_next = NULL;
|
||
|
}
|
||
|
|
||
|
|
||
|
/*
|
||
|
Code for workaround for DMA issue in ESP32 v0/v1 silicon
|
||
|
*/
|
||
|
|
||
|
|
||
|
static volatile int dmaworkaround_channels_busy[2] = {0, 0};
|
||
|
static dmaworkaround_cb_t dmaworkaround_cb;
|
||
|
static void *dmaworkaround_cb_arg;
|
||
|
static portMUX_TYPE dmaworkaround_mux = portMUX_INITIALIZER_UNLOCKED;
|
||
|
static int dmaworkaround_waiting_for_chan = 0;
|
||
|
static bool spi_periph_claimed[3] = {true, false, false};
|
||
|
static uint8_t spi_dma_chan_enabled = 0;
|
||
|
static portMUX_TYPE spi_dma_spinlock = portMUX_INITIALIZER_UNLOCKED;
|
||
|
|
||
|
//--------------------------------------------------------------------------------------------
|
||
|
bool IRAM_ATTR spi_lobo_dmaworkaround_req_reset(int dmachan, dmaworkaround_cb_t cb, void *arg)
|
||
|
{
|
||
|
int otherchan = (dmachan == 1) ? 2 : 1;
|
||
|
bool ret;
|
||
|
portENTER_CRITICAL(&dmaworkaround_mux);
|
||
|
if (dmaworkaround_channels_busy[otherchan-1]) {
|
||
|
//Other channel is busy. Call back when it's done.
|
||
|
dmaworkaround_cb = cb;
|
||
|
dmaworkaround_cb_arg = arg;
|
||
|
dmaworkaround_waiting_for_chan = otherchan;
|
||
|
ret = false;
|
||
|
} else {
|
||
|
//Reset DMA
|
||
|
DPORT_SET_PERI_REG_MASK(DPORT_PERIP_RST_EN_REG, DPORT_SPI_DMA_RST);
|
||
|
DPORT_CLEAR_PERI_REG_MASK(DPORT_PERIP_RST_EN_REG, DPORT_SPI_DMA_RST);
|
||
|
ret = true;
|
||
|
}
|
||
|
portEXIT_CRITICAL(&dmaworkaround_mux);
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
//-------------------------------------------------------
|
||
|
bool IRAM_ATTR spi_lobo_dmaworkaround_reset_in_progress()
|
||
|
{
|
||
|
return (dmaworkaround_waiting_for_chan != 0);
|
||
|
}
|
||
|
|
||
|
//-----------------------------------------------------
|
||
|
void IRAM_ATTR spi_lobo_dmaworkaround_idle(int dmachan)
|
||
|
{
|
||
|
portENTER_CRITICAL(&dmaworkaround_mux);
|
||
|
dmaworkaround_channels_busy[dmachan-1] = 0;
|
||
|
if (dmaworkaround_waiting_for_chan == dmachan) {
|
||
|
//Reset DMA
|
||
|
DPORT_SET_PERI_REG_MASK(DPORT_PERIP_RST_EN_REG, DPORT_SPI_DMA_RST);
|
||
|
DPORT_CLEAR_PERI_REG_MASK(DPORT_PERIP_RST_EN_REG, DPORT_SPI_DMA_RST);
|
||
|
dmaworkaround_waiting_for_chan = 0;
|
||
|
//Call callback
|
||
|
dmaworkaround_cb(dmaworkaround_cb_arg);
|
||
|
|
||
|
}
|
||
|
portEXIT_CRITICAL(&dmaworkaround_mux);
|
||
|
}
|
||
|
|
||
|
//----------------------------------------------------------------
|
||
|
void IRAM_ATTR spi_lobo_dmaworkaround_transfer_active(int dmachan)
|
||
|
{
|
||
|
portENTER_CRITICAL(&dmaworkaround_mux);
|
||
|
dmaworkaround_channels_busy[dmachan-1] = 1;
|
||
|
portEXIT_CRITICAL(&dmaworkaround_mux);
|
||
|
}
|
||
|
|
||
|
//Returns true if this peripheral is successfully claimed, false if otherwise.
|
||
|
//-----------------------------------------------------
|
||
|
bool spi_lobo_periph_claim(spi_lobo_host_device_t host)
|
||
|
{
|
||
|
bool ret = __sync_bool_compare_and_swap(&spi_periph_claimed[host], false, true);
|
||
|
if (ret) periph_module_enable(io_signal[host].module);
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
//Returns true if this peripheral is successfully freed, false if otherwise.
|
||
|
//-----------------------------------------------
|
||
|
bool spi_lobo_periph_free(spi_lobo_host_device_t host)
|
||
|
{
|
||
|
bool ret = __sync_bool_compare_and_swap(&spi_periph_claimed[host], true, false);
|
||
|
if (ret) periph_module_disable(io_signal[host].module);
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
//-----------------------------------------
|
||
|
bool spi_lobo_dma_chan_claim (int dma_chan)
|
||
|
{
|
||
|
bool ret = false;
|
||
|
assert( dma_chan == 1 || dma_chan == 2 );
|
||
|
|
||
|
portENTER_CRITICAL(&spi_dma_spinlock);
|
||
|
if ( !(spi_dma_chan_enabled & DMA_CHANNEL_ENABLED(dma_chan)) ) {
|
||
|
// get the channel only when it's not claimed yet.
|
||
|
spi_dma_chan_enabled |= DMA_CHANNEL_ENABLED(dma_chan);
|
||
|
ret = true;
|
||
|
}
|
||
|
periph_module_enable( PERIPH_SPI_DMA_MODULE );
|
||
|
portEXIT_CRITICAL(&spi_dma_spinlock);
|
||
|
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
//---------------------------------------
|
||
|
bool spi_lobo_dma_chan_free(int dma_chan)
|
||
|
{
|
||
|
assert( dma_chan == 1 || dma_chan == 2 );
|
||
|
assert( spi_dma_chan_enabled & DMA_CHANNEL_ENABLED(dma_chan) );
|
||
|
|
||
|
portENTER_CRITICAL(&spi_dma_spinlock);
|
||
|
spi_dma_chan_enabled &= ~DMA_CHANNEL_ENABLED(dma_chan);
|
||
|
if ( spi_dma_chan_enabled == 0 ) {
|
||
|
//disable the DMA only when all the channels are freed.
|
||
|
periph_module_disable( PERIPH_SPI_DMA_MODULE );
|
||
|
}
|
||
|
portEXIT_CRITICAL(&spi_dma_spinlock);
|
||
|
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
|
||
|
//======================================================================================================
|
||
|
|
||
|
|
||
|
//----------------------------------------------------------------------------------------------------------------
|
||
|
static esp_err_t spi_lobo_bus_initialize(spi_lobo_host_device_t host, spi_lobo_bus_config_t *bus_config, int init)
|
||
|
{
|
||
|
bool native=true, spi_chan_claimed, dma_chan_claimed;
|
||
|
|
||
|
if (init > 0) {
|
||
|
/* ToDo: remove this when we have flash operations cooperating with this */
|
||
|
SPI_CHECK(host!=TFT_SPI_HOST, "SPI1 is not supported", ESP_ERR_NOT_SUPPORTED);
|
||
|
|
||
|
SPI_CHECK(host>=TFT_SPI_HOST && host<=TFT_VSPI_HOST, "invalid host", ESP_ERR_INVALID_ARG);
|
||
|
SPI_CHECK(spihost[host]==NULL, "host already in use", ESP_ERR_INVALID_STATE);
|
||
|
}
|
||
|
else {
|
||
|
SPI_CHECK(spihost[host]!=NULL, "host not in use", ESP_ERR_INVALID_STATE);
|
||
|
}
|
||
|
|
||
|
SPI_CHECK(bus_config->mosi_io_num<0 || GPIO_IS_VALID_OUTPUT_GPIO(bus_config->mosi_io_num), "spid pin invalid", ESP_ERR_INVALID_ARG);
|
||
|
SPI_CHECK(bus_config->sclk_io_num<0 || GPIO_IS_VALID_OUTPUT_GPIO(bus_config->sclk_io_num), "spiclk pin invalid", ESP_ERR_INVALID_ARG);
|
||
|
SPI_CHECK(bus_config->miso_io_num<0 || GPIO_IS_VALID_GPIO(bus_config->miso_io_num), "spiq pin invalid", ESP_ERR_INVALID_ARG);
|
||
|
SPI_CHECK(bus_config->quadwp_io_num<0 || GPIO_IS_VALID_OUTPUT_GPIO(bus_config->quadwp_io_num), "spiwp pin invalid", ESP_ERR_INVALID_ARG);
|
||
|
SPI_CHECK(bus_config->quadhd_io_num<0 || GPIO_IS_VALID_OUTPUT_GPIO(bus_config->quadhd_io_num), "spihd pin invalid", ESP_ERR_INVALID_ARG);
|
||
|
|
||
|
if (init > 0) {
|
||
|
spi_chan_claimed=spi_lobo_periph_claim(host);
|
||
|
SPI_CHECK(spi_chan_claimed, "host already in use", ESP_ERR_INVALID_STATE);
|
||
|
|
||
|
//spihost[host]=malloc(sizeof(spi_lobo_host_t));
|
||
|
spihost[host]=heap_caps_malloc(sizeof(spi_lobo_host_t), MALLOC_CAP_DMA);
|
||
|
if (spihost[host]==NULL) return ESP_ERR_NO_MEM;
|
||
|
memset(spihost[host], 0, sizeof(spi_lobo_host_t));
|
||
|
// Create semaphore
|
||
|
spihost[host]->spi_lobo_bus_mutex = xSemaphoreCreateMutex();
|
||
|
if (!spihost[host]->spi_lobo_bus_mutex) return ESP_ERR_NO_MEM;
|
||
|
}
|
||
|
|
||
|
spihost[host]->cur_device = -1;
|
||
|
memcpy(&spihost[host]->cur_bus_config, bus_config, sizeof(spi_lobo_bus_config_t));
|
||
|
|
||
|
//Check if the selected pins correspond to the native pins of the peripheral
|
||
|
if (bus_config->mosi_io_num >= 0 && bus_config->mosi_io_num!=io_signal[host].spid_native) native=false;
|
||
|
if (bus_config->miso_io_num >= 0 && bus_config->miso_io_num!=io_signal[host].spiq_native) native=false;
|
||
|
if (bus_config->sclk_io_num >= 0 && bus_config->sclk_io_num!=io_signal[host].spiclk_native) native=false;
|
||
|
if (bus_config->quadwp_io_num >= 0 && bus_config->quadwp_io_num!=io_signal[host].spiwp_native) native=false;
|
||
|
if (bus_config->quadhd_io_num >= 0 && bus_config->quadhd_io_num!=io_signal[host].spihd_native) native=false;
|
||
|
|
||
|
spihost[host]->no_gpio_matrix=native;
|
||
|
if (native) {
|
||
|
//All SPI native pin selections resolve to 1, so we put that here instead of trying to figure
|
||
|
//out which FUNC_GPIOx_xSPIxx to grab; they all are defined to 1 anyway.
|
||
|
if (bus_config->mosi_io_num > 0) PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[bus_config->mosi_io_num], 1);
|
||
|
if (bus_config->miso_io_num > 0) PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[bus_config->miso_io_num], 1);
|
||
|
if (bus_config->quadwp_io_num > 0) PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[bus_config->quadwp_io_num], 1);
|
||
|
if (bus_config->quadhd_io_num > 0) PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[bus_config->quadhd_io_num], 1);
|
||
|
if (bus_config->sclk_io_num > 0) PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[bus_config->sclk_io_num], 1);
|
||
|
} else {
|
||
|
//Use GPIO
|
||
|
if (bus_config->mosi_io_num>0) {
|
||
|
PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[bus_config->mosi_io_num], PIN_FUNC_GPIO);
|
||
|
gpio_set_direction(bus_config->mosi_io_num, GPIO_MODE_OUTPUT);
|
||
|
gpio_matrix_out(bus_config->mosi_io_num, io_signal[host].spid_out, false, false);
|
||
|
gpio_matrix_in(bus_config->mosi_io_num, io_signal[host].spid_in, false);
|
||
|
}
|
||
|
if (bus_config->miso_io_num>0) {
|
||
|
PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[bus_config->miso_io_num], PIN_FUNC_GPIO);
|
||
|
gpio_set_direction(bus_config->miso_io_num, GPIO_MODE_INPUT);
|
||
|
gpio_matrix_out(bus_config->miso_io_num, io_signal[host].spiq_out, false, false);
|
||
|
gpio_matrix_in(bus_config->miso_io_num, io_signal[host].spiq_in, false);
|
||
|
}
|
||
|
if (bus_config->quadwp_io_num>0) {
|
||
|
PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[bus_config->quadwp_io_num], PIN_FUNC_GPIO);
|
||
|
gpio_set_direction(bus_config->quadwp_io_num, GPIO_MODE_OUTPUT);
|
||
|
gpio_matrix_out(bus_config->quadwp_io_num, io_signal[host].spiwp_out, false, false);
|
||
|
gpio_matrix_in(bus_config->quadwp_io_num, io_signal[host].spiwp_in, false);
|
||
|
}
|
||
|
if (bus_config->quadhd_io_num>0) {
|
||
|
PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[bus_config->quadhd_io_num], PIN_FUNC_GPIO);
|
||
|
gpio_set_direction(bus_config->quadhd_io_num, GPIO_MODE_OUTPUT);
|
||
|
gpio_matrix_out(bus_config->quadhd_io_num, io_signal[host].spihd_out, false, false);
|
||
|
gpio_matrix_in(bus_config->quadhd_io_num, io_signal[host].spihd_in, false);
|
||
|
}
|
||
|
if (bus_config->sclk_io_num>0) {
|
||
|
PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[bus_config->sclk_io_num], PIN_FUNC_GPIO);
|
||
|
gpio_set_direction(bus_config->sclk_io_num, GPIO_MODE_OUTPUT);
|
||
|
gpio_matrix_out(bus_config->sclk_io_num, io_signal[host].spiclk_out, false, false);
|
||
|
}
|
||
|
}
|
||
|
periph_module_enable(io_signal[host].module);
|
||
|
spihost[host]->hw=io_signal[host].hw;
|
||
|
|
||
|
if (init > 0) {
|
||
|
dma_chan_claimed=spi_lobo_dma_chan_claim(init);
|
||
|
if ( !dma_chan_claimed ) {
|
||
|
spi_lobo_periph_free( host );
|
||
|
SPI_CHECK(dma_chan_claimed, "dma channel already in use", ESP_ERR_INVALID_STATE);
|
||
|
}
|
||
|
spihost[host]->dma_chan = init;
|
||
|
//See how many dma descriptors we need and allocate them
|
||
|
int dma_desc_ct=(bus_config->max_transfer_sz+SPI_MAX_DMA_LEN-1)/SPI_MAX_DMA_LEN;
|
||
|
if (dma_desc_ct==0) dma_desc_ct=1; //default to 4k when max is not given
|
||
|
spihost[host]->max_transfer_sz = dma_desc_ct*SPI_MAX_DMA_LEN;
|
||
|
|
||
|
spihost[host]->dmadesc_tx=heap_caps_malloc(sizeof(lldesc_t)*dma_desc_ct, MALLOC_CAP_DMA);
|
||
|
spihost[host]->dmadesc_rx=heap_caps_malloc(sizeof(lldesc_t)*dma_desc_ct, MALLOC_CAP_DMA);
|
||
|
if (!spihost[host]->dmadesc_tx || !spihost[host]->dmadesc_rx) goto nomem;
|
||
|
|
||
|
//Tell common code DMA workaround that our DMA channel is idle. If needed, the code will do a DMA reset.
|
||
|
spi_lobo_dmaworkaround_idle(spihost[host]->dma_chan);
|
||
|
|
||
|
// Reset DMA
|
||
|
spihost[host]->hw->dma_conf.val |= SPI_OUT_RST|SPI_IN_RST|SPI_AHBM_RST|SPI_AHBM_FIFO_RST;
|
||
|
spihost[host]->hw->dma_out_link.start=0;
|
||
|
spihost[host]->hw->dma_in_link.start=0;
|
||
|
spihost[host]->hw->dma_conf.val &= ~(SPI_OUT_RST|SPI_IN_RST|SPI_AHBM_RST|SPI_AHBM_FIFO_RST);
|
||
|
spihost[host]->hw->dma_conf.out_data_burst_en=1;
|
||
|
|
||
|
//Reset timing
|
||
|
spihost[host]->hw->ctrl2.val=0;
|
||
|
|
||
|
//Disable unneeded ints
|
||
|
spihost[host]->hw->slave.rd_buf_done=0;
|
||
|
spihost[host]->hw->slave.wr_buf_done=0;
|
||
|
spihost[host]->hw->slave.rd_sta_done=0;
|
||
|
spihost[host]->hw->slave.wr_sta_done=0;
|
||
|
spihost[host]->hw->slave.rd_buf_inten=0;
|
||
|
spihost[host]->hw->slave.wr_buf_inten=0;
|
||
|
spihost[host]->hw->slave.rd_sta_inten=0;
|
||
|
spihost[host]->hw->slave.wr_sta_inten=0;
|
||
|
|
||
|
//Force a transaction done interrupt. This interrupt won't fire yet because we initialized the SPI interrupt as
|
||
|
//disabled. This way, we can just enable the SPI interrupt and the interrupt handler will kick in, handling
|
||
|
//any transactions that are queued.
|
||
|
spihost[host]->hw->slave.trans_inten=1;
|
||
|
spihost[host]->hw->slave.trans_done=1;
|
||
|
|
||
|
//Select DMA channel.
|
||
|
DPORT_SET_PERI_REG_BITS(DPORT_SPI_DMA_CHAN_SEL_REG, 3, init, (host * 2));
|
||
|
}
|
||
|
return ESP_OK;
|
||
|
|
||
|
nomem:
|
||
|
if (spihost[host]) {
|
||
|
free(spihost[host]->dmadesc_tx);
|
||
|
free(spihost[host]->dmadesc_rx);
|
||
|
}
|
||
|
free(spihost[host]);
|
||
|
spi_lobo_periph_free(host);
|
||
|
return ESP_ERR_NO_MEM;
|
||
|
}
|
||
|
|
||
|
//---------------------------------------------------------------------------
|
||
|
static esp_err_t spi_lobo_bus_free(spi_lobo_host_device_t host, int dofree)
|
||
|
{
|
||
|
if ((host == TFT_SPI_HOST) || (host > TFT_VSPI_HOST)) return ESP_ERR_NOT_SUPPORTED; // invalid host
|
||
|
|
||
|
if (spihost[host] == NULL) return ESP_ERR_INVALID_STATE; // host not in use
|
||
|
|
||
|
if (dofree) {
|
||
|
for (int x=0; x<NO_DEV; x++) {
|
||
|
if (spihost[host]->device[x] != NULL) return ESP_ERR_INVALID_STATE; // not all devices freed
|
||
|
}
|
||
|
}
|
||
|
if ( spihost[host]->dma_chan > 0 ) {
|
||
|
spi_lobo_dma_chan_free ( spihost[host]->dma_chan );
|
||
|
}
|
||
|
spihost[host]->hw->slave.trans_inten=0;
|
||
|
spihost[host]->hw->slave.trans_done=0;
|
||
|
spi_lobo_periph_free(host);
|
||
|
|
||
|
if (dofree) {
|
||
|
vSemaphoreDelete(spihost[host]->spi_lobo_bus_mutex);
|
||
|
free(spihost[host]->dmadesc_tx);
|
||
|
free(spihost[host]->dmadesc_rx);
|
||
|
free(spihost[host]);
|
||
|
spihost[host] = NULL;
|
||
|
}
|
||
|
return ESP_OK;
|
||
|
}
|
||
|
|
||
|
//---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
|
||
|
esp_err_t spi_lobo_bus_add_device(spi_lobo_host_device_t host, spi_lobo_bus_config_t *bus_config, spi_lobo_device_interface_config_t *dev_config, spi_lobo_device_handle_t *handle)
|
||
|
{
|
||
|
if ((host == TFT_SPI_HOST) || (host > TFT_VSPI_HOST)) return ESP_ERR_NOT_SUPPORTED; // invalid host
|
||
|
|
||
|
if (spihost[host] == NULL) {
|
||
|
esp_err_t ret = spi_lobo_bus_initialize(host, bus_config, 1);
|
||
|
if (ret) return ret;
|
||
|
}
|
||
|
|
||
|
int freecs, maxdev;
|
||
|
int apbclk=APB_CLK_FREQ;
|
||
|
|
||
|
if (spihost[host] == NULL) return ESP_ERR_INVALID_STATE;
|
||
|
|
||
|
if (dev_config->spics_io_num >= 0) {
|
||
|
if (!GPIO_IS_VALID_OUTPUT_GPIO(dev_config->spics_io_num)) return ESP_ERR_INVALID_ARG;
|
||
|
if (dev_config->spics_ext_io_num > 0) dev_config->spics_ext_io_num = -1;
|
||
|
}
|
||
|
else {
|
||
|
//if ((dev_config->spics_ext_io_num <= 0) || (!GPIO_IS_VALID_OUTPUT_GPIO(dev_config->spics_ext_io_num))) return ESP_ERR_INVALID_ARG;
|
||
|
}
|
||
|
|
||
|
//ToDo: Check if some other device uses the same 'spics_ext_io_num'
|
||
|
|
||
|
if (dev_config->clock_speed_hz == 0) return ESP_ERR_INVALID_ARG;
|
||
|
if (dev_config->spics_io_num > 0) maxdev = NO_CS;
|
||
|
else maxdev = NO_DEV;
|
||
|
|
||
|
for (freecs=0; freecs<maxdev; freecs++) {
|
||
|
//See if this slot is free; reserve if it is by putting a dummy pointer in the slot. We use an atomic compare&swap to make this thread-safe.
|
||
|
if (__sync_bool_compare_and_swap(&spihost[host]->device[freecs], NULL, (spi_lobo_device_t *)1)) break;
|
||
|
}
|
||
|
if (freecs == maxdev) return ESP_ERR_NOT_FOUND;
|
||
|
|
||
|
// The hardware looks like it would support this, but actually setting cs_ena_pretrans when transferring in full
|
||
|
// duplex mode does absolutely nothing on the ESP32.
|
||
|
if ((dev_config->cs_ena_pretrans != 0) && (dev_config->flags & LB_SPI_DEVICE_HALFDUPLEX)) return ESP_ERR_INVALID_ARG;
|
||
|
|
||
|
// Speeds >=40MHz over GPIO matrix needs a dummy cycle, but these don't work for full-duplex connections.
|
||
|
if (((dev_config->flags & LB_SPI_DEVICE_HALFDUPLEX)==0) && (dev_config->clock_speed_hz > ((apbclk*2)/5)) && (!spihost[host]->no_gpio_matrix)) return ESP_ERR_INVALID_ARG;
|
||
|
|
||
|
//Allocate memory for device
|
||
|
spi_lobo_device_t *dev=malloc(sizeof(spi_lobo_device_t));
|
||
|
if (dev==NULL) return ESP_ERR_NO_MEM;
|
||
|
|
||
|
memset(dev, 0, sizeof(spi_lobo_device_t));
|
||
|
spihost[host]->device[freecs]=dev;
|
||
|
|
||
|
if (dev_config->duty_cycle_pos==0) dev_config->duty_cycle_pos=128;
|
||
|
dev->host=spihost[host];
|
||
|
dev->host_dev = host;
|
||
|
|
||
|
//We want to save a copy of the dev config in the dev struct.
|
||
|
memcpy(&dev->cfg, dev_config, sizeof(spi_lobo_device_interface_config_t));
|
||
|
//We want to save a copy of the bus config in the dev struct.
|
||
|
memcpy(&dev->bus_config, bus_config, sizeof(spi_lobo_bus_config_t));
|
||
|
|
||
|
//Set CS pin, CS options
|
||
|
if (dev_config->spics_io_num > 0) {
|
||
|
if (spihost[host]->no_gpio_matrix &&dev_config->spics_io_num == io_signal[host].spics0_native && freecs==0) {
|
||
|
//Again, the cs0s for all SPI peripherals map to pin mux source 1, so we use that instead of a define.
|
||
|
PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[dev_config->spics_io_num], 1);
|
||
|
} else {
|
||
|
//Use GPIO matrix
|
||
|
PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[dev_config->spics_io_num], PIN_FUNC_GPIO);
|
||
|
gpio_set_direction(dev_config->spics_io_num, GPIO_MODE_OUTPUT);
|
||
|
gpio_matrix_out(dev_config->spics_io_num, io_signal[host].spics_out[freecs], false, false);
|
||
|
}
|
||
|
}
|
||
|
else if (dev_config->spics_ext_io_num >= 0) {
|
||
|
gpio_set_direction(dev_config->spics_ext_io_num, GPIO_MODE_OUTPUT);
|
||
|
gpio_set_level(dev_config->spics_ext_io_num, 1);
|
||
|
}
|
||
|
if (dev_config->flags & LB_SPI_DEVICE_CLK_AS_CS) {
|
||
|
spihost[host]->hw->pin.master_ck_sel |= (1<<freecs);
|
||
|
} else {
|
||
|
spihost[host]->hw->pin.master_ck_sel &= (1<<freecs);
|
||
|
}
|
||
|
if (dev_config->flags & LB_SPI_DEVICE_POSITIVE_CS) {
|
||
|
spihost[host]->hw->pin.master_cs_pol |= (1<<freecs);
|
||
|
} else {
|
||
|
spihost[host]->hw->pin.master_cs_pol &= (1<<freecs);
|
||
|
}
|
||
|
|
||
|
*handle = dev;
|
||
|
return ESP_OK;
|
||
|
}
|
||
|
|
||
|
//-------------------------------------------------------------------
|
||
|
esp_err_t spi_lobo_bus_remove_device(spi_lobo_device_handle_t handle)
|
||
|
{
|
||
|
int x;
|
||
|
if (handle == NULL) return ESP_ERR_INVALID_ARG;
|
||
|
|
||
|
//Remove device from list of csses and free memory
|
||
|
for (x=0; x<NO_DEV; x++) {
|
||
|
if (handle->host->device[x] == handle) handle->host->device[x]=NULL;
|
||
|
}
|
||
|
|
||
|
// Check if all devices are removed from this host and free the bus if yes
|
||
|
for (x=0; x<NO_DEV; x++) {
|
||
|
if (spihost[handle->host_dev]->device[x] !=NULL) break;
|
||
|
}
|
||
|
if (x == NO_DEV) {
|
||
|
free(handle);
|
||
|
spi_lobo_bus_free(handle->host_dev, 1);
|
||
|
}
|
||
|
else free(handle);
|
||
|
|
||
|
return ESP_OK;
|
||
|
}
|
||
|
|
||
|
//-----------------------------------------------------------------
|
||
|
static int IRAM_ATTR spi_freq_for_pre_n(int fapb, int pre, int n) {
|
||
|
return (fapb / (pre * n));
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Set the SPI clock to a certain frequency. Returns the effective frequency set, which may be slightly
|
||
|
* different from the requested frequency.
|
||
|
*/
|
||
|
//-----------------------------------------------------------------------------------
|
||
|
static int IRAM_ATTR spi_set_clock(spi_dev_t *hw, int fapb, int hz, int duty_cycle) {
|
||
|
int pre, n, h, l, eff_clk;
|
||
|
|
||
|
//In hw, n, h and l are 1-64, pre is 1-8K. Value written to register is one lower than used value.
|
||
|
if (hz>((fapb/4)*3)) {
|
||
|
//Using Fapb directly will give us the best result here.
|
||
|
hw->clock.clkcnt_l=0;
|
||
|
hw->clock.clkcnt_h=0;
|
||
|
hw->clock.clkcnt_n=0;
|
||
|
hw->clock.clkdiv_pre=0;
|
||
|
hw->clock.clk_equ_sysclk=1;
|
||
|
eff_clk=fapb;
|
||
|
} else {
|
||
|
//For best duty cycle resolution, we want n to be as close to 32 as possible, but
|
||
|
//we also need a pre/n combo that gets us as close as possible to the intended freq.
|
||
|
//To do this, we bruteforce n and calculate the best pre to go along with that.
|
||
|
//If there's a choice between pre/n combos that give the same result, use the one
|
||
|
//with the higher n.
|
||
|
int bestn=-1;
|
||
|
int bestpre=-1;
|
||
|
int besterr=0;
|
||
|
int errval;
|
||
|
for (n=1; n<=64; n++) {
|
||
|
//Effectively, this does pre=round((fapb/n)/hz).
|
||
|
pre=((fapb/n)+(hz/2))/hz;
|
||
|
if (pre<=0) pre=1;
|
||
|
if (pre>8192) pre=8192;
|
||
|
errval=abs(spi_freq_for_pre_n(fapb, pre, n)-hz);
|
||
|
if (bestn==-1 || errval<=besterr) {
|
||
|
besterr=errval;
|
||
|
bestn=n;
|
||
|
bestpre=pre;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
n=bestn;
|
||
|
pre=bestpre;
|
||
|
l=n;
|
||
|
//This effectively does round((duty_cycle*n)/256)
|
||
|
h=(duty_cycle*n+127)/256;
|
||
|
if (h<=0) h=1;
|
||
|
|
||
|
hw->clock.clk_equ_sysclk=0;
|
||
|
hw->clock.clkcnt_n=n-1;
|
||
|
hw->clock.clkdiv_pre=pre-1;
|
||
|
hw->clock.clkcnt_h=h-1;
|
||
|
hw->clock.clkcnt_l=l-1;
|
||
|
eff_clk=spi_freq_for_pre_n(fapb, pre, n);
|
||
|
}
|
||
|
return eff_clk;
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
//------------------------------------------------------------------------------------
|
||
|
esp_err_t IRAM_ATTR spi_lobo_device_select(spi_lobo_device_handle_t handle, int force)
|
||
|
{
|
||
|
if (handle == NULL) return ESP_ERR_INVALID_ARG;
|
||
|
|
||
|
if ((handle->cfg.selected == 1) && (!force)) return ESP_OK; // already selected
|
||
|
|
||
|
int i;
|
||
|
spi_lobo_host_t *host=(spi_lobo_host_t*)handle->host;
|
||
|
|
||
|
// find device's host bus
|
||
|
for (i=0; i<NO_DEV; i++) {
|
||
|
if (host->device[i] == handle) break;
|
||
|
}
|
||
|
if (i == NO_DEV) return ESP_ERR_INVALID_ARG;
|
||
|
|
||
|
if (!(xSemaphoreTake(host->spi_lobo_bus_mutex, SPI_SEMAPHORE_WAIT))) return ESP_ERR_INVALID_STATE;
|
||
|
|
||
|
// Check if previously used device's bus device is the same
|
||
|
if (memcmp(&host->cur_bus_config, &handle->bus_config, sizeof(spi_lobo_bus_config_t)) != 0) {
|
||
|
// device has different bus configuration, we need to reconfigure the bus
|
||
|
esp_err_t err = spi_lobo_bus_free(1, 0);
|
||
|
if (err) {
|
||
|
xSemaphoreGive(host->spi_lobo_bus_mutex);
|
||
|
return err;
|
||
|
}
|
||
|
err = spi_lobo_bus_initialize(i, &handle->bus_config, -1);
|
||
|
if (err) {
|
||
|
xSemaphoreGive(host->spi_lobo_bus_mutex);
|
||
|
return err;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
//Reconfigure according to device settings, but only if the device changed or forced.
|
||
|
if ((force) || (host->device[host->cur_device] != handle)) {
|
||
|
//Assumes a hardcoded 80MHz Fapb for now. ToDo: figure out something better once we have clock scaling working.
|
||
|
int apbclk=APB_CLK_FREQ;
|
||
|
|
||
|
//Speeds >=40MHz over GPIO matrix needs a dummy cycle, but these don't work for full-duplex connections.
|
||
|
if (((handle->cfg.flags & LB_SPI_DEVICE_HALFDUPLEX) == 0) && (handle->cfg.clock_speed_hz > ((apbclk*2)/5)) && (!host->no_gpio_matrix)) {
|
||
|
// set speed to 32 MHz
|
||
|
handle->cfg.clock_speed_hz = (apbclk*2)/5;
|
||
|
}
|
||
|
|
||
|
int effclk=spi_set_clock(host->hw, apbclk, handle->cfg.clock_speed_hz, handle->cfg.duty_cycle_pos);
|
||
|
//Configure bit order
|
||
|
host->hw->ctrl.rd_bit_order=(handle->cfg.flags & LB_SPI_DEVICE_RXBIT_LSBFIRST)?1:0;
|
||
|
host->hw->ctrl.wr_bit_order=(handle->cfg.flags & LB_SPI_DEVICE_TXBIT_LSBFIRST)?1:0;
|
||
|
|
||
|
//Configure polarity
|
||
|
//SPI iface needs to be configured for a delay in some cases.
|
||
|
int nodelay=0;
|
||
|
int extra_dummy=0;
|
||
|
if (host->no_gpio_matrix) {
|
||
|
if (effclk >= apbclk/2) {
|
||
|
nodelay=1;
|
||
|
}
|
||
|
} else {
|
||
|
if (effclk >= apbclk/2) {
|
||
|
nodelay=1;
|
||
|
extra_dummy=1; //Note: This only works on half-duplex connections. spi_lobo_bus_add_device checks for this.
|
||
|
} else if (effclk >= apbclk/4) {
|
||
|
nodelay=1;
|
||
|
}
|
||
|
}
|
||
|
if (handle->cfg.mode==0) {
|
||
|
host->hw->pin.ck_idle_edge=0;
|
||
|
host->hw->user.ck_out_edge=0;
|
||
|
host->hw->ctrl2.miso_delay_mode=nodelay?0:2;
|
||
|
} else if (handle->cfg.mode==1) {
|
||
|
host->hw->pin.ck_idle_edge=0;
|
||
|
host->hw->user.ck_out_edge=1;
|
||
|
host->hw->ctrl2.miso_delay_mode=nodelay?0:1;
|
||
|
} else if (handle->cfg.mode==2) {
|
||
|
host->hw->pin.ck_idle_edge=1;
|
||
|
host->hw->user.ck_out_edge=1;
|
||
|
host->hw->ctrl2.miso_delay_mode=nodelay?0:1;
|
||
|
} else if (handle->cfg.mode==3) {
|
||
|
host->hw->pin.ck_idle_edge=1;
|
||
|
host->hw->user.ck_out_edge=0;
|
||
|
host->hw->ctrl2.miso_delay_mode=nodelay?0:2;
|
||
|
}
|
||
|
|
||
|
//Configure bit sizes, load addr and command
|
||
|
host->hw->user.usr_dummy=(handle->cfg.dummy_bits+extra_dummy)?1:0;
|
||
|
host->hw->user.usr_addr=(handle->cfg.address_bits)?1:0;
|
||
|
host->hw->user.usr_command=(handle->cfg.command_bits)?1:0;
|
||
|
host->hw->user1.usr_addr_bitlen=handle->cfg.address_bits-1;
|
||
|
host->hw->user1.usr_dummy_cyclelen=handle->cfg.dummy_bits+extra_dummy-1;
|
||
|
host->hw->user2.usr_command_bitlen=handle->cfg.command_bits-1;
|
||
|
//Configure misc stuff
|
||
|
host->hw->user.doutdin=(handle->cfg.flags & LB_SPI_DEVICE_HALFDUPLEX)?0:1;
|
||
|
host->hw->user.sio=(handle->cfg.flags & LB_SPI_DEVICE_3WIRE)?1:0;
|
||
|
|
||
|
host->hw->ctrl2.setup_time=handle->cfg.cs_ena_pretrans-1;
|
||
|
host->hw->user.cs_setup=handle->cfg.cs_ena_pretrans?1:0;
|
||
|
host->hw->ctrl2.hold_time=handle->cfg.cs_ena_posttrans-1;
|
||
|
host->hw->user.cs_hold=(handle->cfg.cs_ena_posttrans)?1:0;
|
||
|
|
||
|
//Configure CS pin
|
||
|
host->hw->pin.cs0_dis=(i==0)?0:1;
|
||
|
host->hw->pin.cs1_dis=(i==1)?0:1;
|
||
|
host->hw->pin.cs2_dis=(i==2)?0:1;
|
||
|
|
||
|
host->cur_device = i;
|
||
|
}
|
||
|
|
||
|
if ((handle->cfg.spics_io_num < 0) && (handle->cfg.spics_ext_io_num > 0)) {
|
||
|
gpio_set_level(handle->cfg.spics_ext_io_num, 0);
|
||
|
}
|
||
|
|
||
|
handle->cfg.selected = 1;
|
||
|
|
||
|
return ESP_OK;
|
||
|
}
|
||
|
|
||
|
//---------------------------------------------------------------------------
|
||
|
esp_err_t IRAM_ATTR spi_lobo_device_deselect(spi_lobo_device_handle_t handle)
|
||
|
{
|
||
|
if (handle == NULL) return ESP_ERR_INVALID_ARG;
|
||
|
|
||
|
if (handle->cfg.selected == 0) return ESP_OK; // already deselected
|
||
|
|
||
|
int i;
|
||
|
spi_lobo_host_t *host=(spi_lobo_host_t*)handle->host;
|
||
|
|
||
|
for (i=0; i<NO_DEV; i++) {
|
||
|
if (host->device[i] == handle) break;
|
||
|
}
|
||
|
if (i == NO_DEV) return ESP_ERR_INVALID_ARG;
|
||
|
|
||
|
if (host->device[host->cur_device] == handle) {
|
||
|
if ((handle->cfg.spics_io_num < 0) && (handle->cfg.spics_ext_io_num > 0)) {
|
||
|
gpio_set_level(handle->cfg.spics_ext_io_num, 1);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
handle->cfg.selected = 0;
|
||
|
xSemaphoreGive(host->spi_lobo_bus_mutex);
|
||
|
|
||
|
return ESP_OK;
|
||
|
}
|
||
|
|
||
|
//--------------------------------------------------------------------------------
|
||
|
esp_err_t IRAM_ATTR spi_lobo_device_TakeSemaphore(spi_lobo_device_handle_t handle)
|
||
|
{
|
||
|
if (!(xSemaphoreTake(handle->host->spi_lobo_bus_mutex, SPI_SEMAPHORE_WAIT))) return ESP_ERR_INVALID_STATE;
|
||
|
else return ESP_OK;
|
||
|
}
|
||
|
|
||
|
//---------------------------------------------------------------------------
|
||
|
void IRAM_ATTR spi_lobo_device_GiveSemaphore(spi_lobo_device_handle_t handle)
|
||
|
{
|
||
|
xSemaphoreTake(handle->host->spi_lobo_bus_mutex, portMAX_DELAY);
|
||
|
}
|
||
|
|
||
|
//----------------------------------------------------------
|
||
|
uint32_t spi_lobo_get_speed(spi_lobo_device_handle_t handle)
|
||
|
{
|
||
|
spi_lobo_host_t *host=(spi_lobo_host_t*)handle->host;
|
||
|
uint32_t speed = 0;
|
||
|
if (spi_lobo_device_select(handle, 0) == ESP_OK) {
|
||
|
if (host->hw->clock.clk_equ_sysclk == 1) speed = 80000000;
|
||
|
else speed = 80000000/(host->hw->clock.clkdiv_pre+1)/(host->hw->clock.clkcnt_n+1);
|
||
|
}
|
||
|
spi_lobo_device_deselect(handle);
|
||
|
return speed;
|
||
|
}
|
||
|
|
||
|
//--------------------------------------------------------------------------
|
||
|
uint32_t spi_lobo_set_speed(spi_lobo_device_handle_t handle, uint32_t speed)
|
||
|
{
|
||
|
spi_lobo_host_t *host=(spi_lobo_host_t*)handle->host;
|
||
|
uint32_t newspeed = 0;
|
||
|
if (spi_lobo_device_select(handle, 0) == ESP_OK) {
|
||
|
spi_lobo_device_deselect(handle);
|
||
|
handle->cfg.clock_speed_hz = speed;
|
||
|
if (spi_lobo_device_select(handle, 1) == ESP_OK) {
|
||
|
if (host->hw->clock.clk_equ_sysclk == 1) newspeed = 80000000;
|
||
|
else newspeed = 80000000/(host->hw->clock.clkdiv_pre+1)/(host->hw->clock.clkcnt_n+1);
|
||
|
}
|
||
|
}
|
||
|
spi_lobo_device_deselect(handle);
|
||
|
|
||
|
return newspeed;
|
||
|
}
|
||
|
|
||
|
//-------------------------------------------------------------
|
||
|
bool spi_lobo_uses_native_pins(spi_lobo_device_handle_t handle)
|
||
|
{
|
||
|
return handle->host->no_gpio_matrix;
|
||
|
}
|
||
|
|
||
|
//-------------------------------------------------------------------
|
||
|
void spi_lobo_get_native_pins(int host, int *sdi, int *sdo, int *sck)
|
||
|
{
|
||
|
*sdo = io_signal[host].spid_native;
|
||
|
*sdi = io_signal[host].spiq_native;
|
||
|
*sck = io_signal[host].spiclk_native;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
When using 'spi_lobo_transfer_data' function we can have several scenarios:
|
||
|
|
||
|
A: Send only (trans->rxlength = 0)
|
||
|
B: Receive only (trans->txlength = 0)
|
||
|
C: Send & receive (trans->txlength > 0 & trans->rxlength > 0)
|
||
|
D: No operation (trans->txlength = 0 & trans->rxlength = 0)
|
||
|
|
||
|
*/
|
||
|
//----------------------------------------------------------------------------------------------------------
|
||
|
esp_err_t IRAM_ATTR spi_lobo_transfer_data(spi_lobo_device_handle_t handle, spi_lobo_transaction_t *trans) {
|
||
|
if (!handle) return ESP_ERR_INVALID_ARG;
|
||
|
|
||
|
// *** For now we can only handle 8-bit bytes transmission
|
||
|
if (((trans->length % 8) != 0) || ((trans->rxlength % 8) != 0)) return ESP_ERR_INVALID_ARG;
|
||
|
|
||
|
spi_lobo_host_t *host=(spi_lobo_host_t*)handle->host;
|
||
|
esp_err_t ret;
|
||
|
uint8_t do_deselect = 0;
|
||
|
const uint8_t *txbuffer = NULL;
|
||
|
uint8_t *rxbuffer = NULL;
|
||
|
|
||
|
if (trans->flags & LB_SPI_TRANS_USE_TXDATA) {
|
||
|
// Send data from 'trans->tx_data'
|
||
|
txbuffer=(uint8_t*)&trans->tx_data[0];
|
||
|
} else {
|
||
|
// Send data from 'trans->tx_buffer'
|
||
|
txbuffer=(uint8_t*)trans->tx_buffer;
|
||
|
}
|
||
|
if (trans->flags & LB_SPI_TRANS_USE_RXDATA) {
|
||
|
// Receive data to 'trans->rx_data'
|
||
|
rxbuffer=(uint8_t*)&trans->rx_data[0];
|
||
|
} else {
|
||
|
// Receive data to 'trans->rx_buffer'
|
||
|
rxbuffer=(uint8_t*)trans->rx_buffer;
|
||
|
}
|
||
|
|
||
|
// ** Set transmit & receive length in bytes
|
||
|
uint32_t txlen = trans->length / 8;
|
||
|
uint32_t rxlen = trans->rxlength / 8;
|
||
|
|
||
|
if (txbuffer == NULL) txlen = 0;
|
||
|
if (rxbuffer == NULL) rxlen = 0;
|
||
|
if ((rxlen == 0) && (txlen == 0)) {
|
||
|
// ** NOTHING TO SEND or RECEIVE, return
|
||
|
return ESP_ERR_INVALID_ARG;
|
||
|
}
|
||
|
|
||
|
// If using 'trans->tx_data' and/or 'trans->rx_data', maximum 4 bytes can be sent/received
|
||
|
if ((txbuffer == &trans->tx_data[0]) && (txlen > 4)) return ESP_ERR_INVALID_ARG;
|
||
|
if ((rxbuffer == &trans->rx_data[0]) && (rxlen > 4)) return ESP_ERR_INVALID_ARG;
|
||
|
|
||
|
// --- Wait for SPI bus ready ---
|
||
|
while (host->hw->cmd.usr);
|
||
|
|
||
|
// ** If the device was not selected, select it
|
||
|
if (handle->cfg.selected == 0) {
|
||
|
ret = spi_lobo_device_select(handle, 0);
|
||
|
if (ret) return ret;
|
||
|
do_deselect = 1; // We will deselect the device after the operation !
|
||
|
}
|
||
|
|
||
|
// ** Call pre-transmission callback, if any
|
||
|
if (handle->cfg.pre_cb) handle->cfg.pre_cb(trans);
|
||
|
|
||
|
// Test if operating in full duplex mode
|
||
|
uint8_t duplex = 1;
|
||
|
if (handle->cfg.flags & LB_SPI_DEVICE_HALFDUPLEX) duplex = 0; // Half duplex mode !
|
||
|
|
||
|
uint32_t bits, rdbits;
|
||
|
uint32_t wd;
|
||
|
uint8_t bc, rdidx;
|
||
|
uint32_t rdcount = rxlen; // Total number of bytes to read
|
||
|
uint32_t count = 0; // number of bytes transmitted
|
||
|
uint32_t rd_read = 0; // Number of bytes read so far
|
||
|
|
||
|
host->hw->user.usr_mosi_highpart = 0; // use the whole spi buffer
|
||
|
|
||
|
// ** Check if address phase will be used
|
||
|
host->hw->user2.usr_command_value=trans->command;
|
||
|
if (handle->cfg.address_bits>32) {
|
||
|
host->hw->addr=trans->address >> 32;
|
||
|
host->hw->slv_wr_status=trans->address & 0xffffffff;
|
||
|
} else {
|
||
|
host->hw->addr=trans->address & 0xffffffff;
|
||
|
}
|
||
|
|
||
|
// Check if we have to transmit some data
|
||
|
if (txlen > 0) {
|
||
|
host->hw->user.usr_mosi = 1;
|
||
|
uint8_t idx;
|
||
|
bits = 0; // remaining bits to send
|
||
|
idx = 0; // index to spi hw data_buf (16 32-bit words, 64 bytes, 512 bits)
|
||
|
|
||
|
// ** Transmit 'txlen' bytes
|
||
|
while (count < txlen) {
|
||
|
wd = 0;
|
||
|
for (bc=0;bc<32;bc+=8) {
|
||
|
wd |= (uint32_t)txbuffer[count] << bc;
|
||
|
count++; // Increment sent data count
|
||
|
bits += 8; // Increment bits count
|
||
|
if (count == txlen) break; // If all transmit data pushed to hw spi buffer break from the loop
|
||
|
}
|
||
|
host->hw->data_buf[idx] = wd;
|
||
|
idx++;
|
||
|
if (idx == 16) {
|
||
|
// hw SPI buffer full (all 64 bytes filled, START THE TRANSSACTION
|
||
|
host->hw->mosi_dlen.usr_mosi_dbitlen=bits-1; // Set mosi dbitlen
|
||
|
|
||
|
if ((duplex) && (rdcount > 0)) {
|
||
|
// In full duplex mode we are receiving while sending !
|
||
|
host->hw->miso_dlen.usr_miso_dbitlen = bits-1; // Set miso dbitlen
|
||
|
host->hw->user.usr_miso = 1;
|
||
|
}
|
||
|
else {
|
||
|
host->hw->miso_dlen.usr_miso_dbitlen = 0; // In half duplex mode nothing will be received
|
||
|
host->hw->user.usr_miso = 0;
|
||
|
}
|
||
|
|
||
|
// ** Start the transaction ***
|
||
|
host->hw->cmd.usr=1;
|
||
|
// Wait the transaction to finish
|
||
|
while (host->hw->cmd.usr);
|
||
|
|
||
|
if ((duplex) && (rdcount > 0)) {
|
||
|
// *** in full duplex mode transfer received data to input buffer ***
|
||
|
rdidx = 0;
|
||
|
while (bits > 0) {
|
||
|
wd = host->hw->data_buf[rdidx];
|
||
|
rdidx++;
|
||
|
for (bc=0;bc<32;bc+=8) { // get max 4 bytes
|
||
|
rxbuffer[rd_read++] = (uint8_t)((wd >> bc) & 0xFF);
|
||
|
rdcount--;
|
||
|
bits -= 8;
|
||
|
if (rdcount == 0) {
|
||
|
bits = 0;
|
||
|
break; // Finished reading data
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
bits = 0; // nothing in hw spi buffer yet
|
||
|
idx = 0; // start from the beginning of the hw spi buffer
|
||
|
}
|
||
|
}
|
||
|
// *** All transmit data are sent or pushed to hw spi buffer
|
||
|
// bits > 0 IF THERE ARE SOME DATA STILL WAITING IN THE HW SPI TRANSMIT BUFFER
|
||
|
if (bits > 0) {
|
||
|
// ** WE HAVE SOME DATA IN THE HW SPI TRANSMIT BUFFER
|
||
|
host->hw->mosi_dlen.usr_mosi_dbitlen = bits-1; // Set mosi dbitlen
|
||
|
|
||
|
if ((duplex) && (rdcount > 0)) {
|
||
|
// In full duplex mode we are receiving while sending !
|
||
|
host->hw->miso_dlen.usr_miso_dbitlen = bits-1; // Set miso dbitlen
|
||
|
host->hw->user.usr_miso = 1;
|
||
|
}
|
||
|
else {
|
||
|
host->hw->miso_dlen.usr_miso_dbitlen = 0; // In half duplex mode nothing will be received
|
||
|
host->hw->user.usr_miso = 0;
|
||
|
}
|
||
|
|
||
|
// ** Start the transaction ***
|
||
|
host->hw->cmd.usr=1;
|
||
|
// Wait the transaction to finish
|
||
|
while (host->hw->cmd.usr);
|
||
|
|
||
|
if ((duplex) && (rdcount > 0)) {
|
||
|
// *** in full duplex mode transfer received data to input buffer ***
|
||
|
rdidx = 0;
|
||
|
while (bits > 0) {
|
||
|
wd = host->hw->data_buf[rdidx];
|
||
|
rdidx++;
|
||
|
for (bc=0;bc<32;bc+=8) { // get max 4 bytes
|
||
|
rxbuffer[rd_read++] = (uint8_t)((wd >> bc) & 0xFF);
|
||
|
rdcount--;
|
||
|
bits -= 8;
|
||
|
if (bits == 0) break;
|
||
|
if (rdcount == 0) {
|
||
|
bits = 0;
|
||
|
break; // Finished reading data
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
//if (duplex) rdcount = 0; // In duplex mode receive only as many bytes as was transmitted
|
||
|
}
|
||
|
|
||
|
// ------------------------------------------------------------------------
|
||
|
// *** If rdcount = 0 we have nothing to receive and we exit the function
|
||
|
// This is true if no data receive was requested,
|
||
|
// or all the data was received in Full duplex mode during the transmission
|
||
|
// ------------------------------------------------------------------------
|
||
|
if (rdcount > 0) {
|
||
|
// ----------------------------------------------------------------------------------------------------------------
|
||
|
// *** rdcount > 0, we have to receive some data
|
||
|
// This is true if we operate in Half duplex mode when receiving after transmission is done,
|
||
|
// or not all data was received in Full duplex mode during the transmission (trans->rxlength > trans->txlength)
|
||
|
// ----------------------------------------------------------------------------------------------------------------
|
||
|
host->hw->user.usr_mosi = 0; // do not send
|
||
|
host->hw->user.usr_miso = 1; // do receive
|
||
|
while (rdcount > 0) {
|
||
|
if (rdcount <= 64) rdbits = rdcount * 8;
|
||
|
else rdbits = 64 * 8;
|
||
|
|
||
|
// Load receive buffer
|
||
|
host->hw->mosi_dlen.usr_mosi_dbitlen=0;
|
||
|
host->hw->miso_dlen.usr_miso_dbitlen=rdbits-1;
|
||
|
|
||
|
// ** Start the transaction ***
|
||
|
host->hw->cmd.usr=1;
|
||
|
// Wait the transaction to finish
|
||
|
while (host->hw->cmd.usr);
|
||
|
|
||
|
// *** transfer received data to input buffer ***
|
||
|
rdidx = 0;
|
||
|
while (rdbits > 0) {
|
||
|
wd = host->hw->data_buf[rdidx];
|
||
|
rdidx++;
|
||
|
for (bc=0;bc<32;bc+=8) {
|
||
|
rxbuffer[rd_read++] = (uint8_t)((wd >> bc) & 0xFF);
|
||
|
rdcount--;
|
||
|
rdbits -= 8;
|
||
|
if (rdcount == 0) {
|
||
|
rdbits = 0;
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// ** Call post-transmission callback, if any
|
||
|
if (handle->cfg.post_cb) handle->cfg.post_cb(trans);
|
||
|
|
||
|
if (do_deselect) {
|
||
|
// Spi device was selected in this function, we have to deselect it now
|
||
|
ret = spi_lobo_device_deselect(handle);
|
||
|
if (ret) return ret;
|
||
|
}
|
||
|
|
||
|
return ESP_OK;
|
||
|
}
|