# sql/visitors.py # Copyright (C) 2005-2021 the SQLAlchemy authors and contributors # # # This module is part of SQLAlchemy and is released under # the MIT License: http://www.opensource.org/licenses/mit-license.php """Visitor/traversal interface and library functions. SQLAlchemy schema and expression constructs rely on a Python-centric version of the classic "visitor" pattern as the primary way in which they apply functionality. The most common use of this pattern is statement compilation, where individual expression classes match up to rendering methods that produce a string result. Beyond this, the visitor system is also used to inspect expressions for various information and patterns, as well as for the purposes of applying transformations to expressions. Examples of how the visit system is used can be seen in the source code of for example the ``sqlalchemy.sql.util`` and the ``sqlalchemy.sql.compiler`` modules. Some background on clause adaption is also at http://techspot.zzzeek.org/2008/01/23/expression-transformations/ . """ from collections import deque import itertools import operator from .. import exc from .. import util from ..util import langhelpers from ..util import symbol __all__ = [ "iterate", "traverse_using", "traverse", "cloned_traverse", "replacement_traverse", "Traversible", "TraversibleType", "ExternalTraversal", "InternalTraversal", ] def _generate_compiler_dispatch(cls): """Generate a _compiler_dispatch() external traversal on classes with a __visit_name__ attribute. """ visit_name = cls.__visit_name__ if "_compiler_dispatch" in cls.__dict__: # class has a fixed _compiler_dispatch() method. # copy it to "original" so that we can get it back if # sqlalchemy.ext.compiles overrides it. cls._original_compiler_dispatch = cls._compiler_dispatch return if not isinstance(visit_name, util.compat.string_types): raise exc.InvalidRequestError( "__visit_name__ on class %s must be a string at the class level" % cls.__name__ ) name = "visit_%s" % visit_name getter = operator.attrgetter(name) def _compiler_dispatch(self, visitor, **kw): """Look for an attribute named "visit_" on the visitor, and call it with the same kw params. """ try: meth = getter(visitor) except AttributeError as err: return visitor.visit_unsupported_compilation(self, err, **kw) else: return meth(self, **kw) cls._compiler_dispatch = ( cls._original_compiler_dispatch ) = _compiler_dispatch class TraversibleType(type): """Metaclass which assigns dispatch attributes to various kinds of "visitable" classes. Attributes include: * The ``_compiler_dispatch`` method, corresponding to ``__visit_name__``. This is called "external traversal" because the caller of each visit() method is responsible for sub-traversing the inner elements of each object. This is appropriate for string compilers and other traversals that need to call upon the inner elements in a specific pattern. * internal traversal collections ``_children_traversal``, ``_cache_key_traversal``, ``_copy_internals_traversal``, generated from an optional ``_traverse_internals`` collection of symbols which comes from the :class:`.InternalTraversal` list of symbols. This is called "internal traversal" MARKMARK """ def __init__(cls, clsname, bases, clsdict): if clsname != "Traversible": if "__visit_name__" in clsdict: _generate_compiler_dispatch(cls) super(TraversibleType, cls).__init__(clsname, bases, clsdict) class Traversible(util.with_metaclass(TraversibleType)): """Base class for visitable objects, applies the :class:`.visitors.TraversibleType` metaclass. """ @util.preload_module("sqlalchemy.sql.traversals") def get_children(self, omit_attrs=(), **kw): r"""Return immediate child :class:`.visitors.Traversible` elements of this :class:`.visitors.Traversible`. This is used for visit traversal. \**kw may contain flags that change the collection that is returned, for example to return a subset of items in order to cut down on larger traversals, or to return child items from a different context (such as schema-level collections instead of clause-level). """ traversals = util.preloaded.sql_traversals try: traverse_internals = self._traverse_internals except AttributeError: # user-defined classes may not have a _traverse_internals return [] dispatch = traversals._get_children.run_generated_dispatch return itertools.chain.from_iterable( meth(obj, **kw) for attrname, obj, meth in dispatch( self, traverse_internals, "_generated_get_children_traversal" ) if attrname not in omit_attrs and obj is not None ) class _InternalTraversalType(type): def __init__(cls, clsname, bases, clsdict): if cls.__name__ in ("InternalTraversal", "ExtendedInternalTraversal"): lookup = {} for key, sym in clsdict.items(): if key.startswith("dp_"): visit_key = key.replace("dp_", "visit_") sym_name = sym.name assert sym_name not in lookup, sym_name lookup[sym] = lookup[sym_name] = visit_key if hasattr(cls, "_dispatch_lookup"): lookup.update(cls._dispatch_lookup) cls._dispatch_lookup = lookup super(_InternalTraversalType, cls).__init__(clsname, bases, clsdict) def _generate_dispatcher(visitor, internal_dispatch, method_name): names = [] for attrname, visit_sym in internal_dispatch: meth = visitor.dispatch(visit_sym) if meth: visit_name = ExtendedInternalTraversal._dispatch_lookup[visit_sym] names.append((attrname, visit_name)) code = ( (" return [\n") + ( ", \n".join( " (%r, self.%s, visitor.%s)" % (attrname, attrname, visit_name) for attrname, visit_name in names ) ) + ("\n ]\n") ) meth_text = ("def %s(self, visitor):\n" % method_name) + code + "\n" # print(meth_text) return langhelpers._exec_code_in_env(meth_text, {}, method_name) class InternalTraversal(util.with_metaclass(_InternalTraversalType, object)): r"""Defines visitor symbols used for internal traversal. The :class:`.InternalTraversal` class is used in two ways. One is that it can serve as the superclass for an object that implements the various visit methods of the class. The other is that the symbols themselves of :class:`.InternalTraversal` are used within the ``_traverse_internals`` collection. Such as, the :class:`.Case` object defines ``_traverse_internals`` as :: _traverse_internals = [ ("value", InternalTraversal.dp_clauseelement), ("whens", InternalTraversal.dp_clauseelement_tuples), ("else_", InternalTraversal.dp_clauseelement), ] Above, the :class:`.Case` class indicates its internal state as the attributes named ``value``, ``whens``, and ``else_``. They each link to an :class:`.InternalTraversal` method which indicates the type of datastructure referred towards. Using the ``_traverse_internals`` structure, objects of type :class:`.InternalTraversible` will have the following methods automatically implemented: * :meth:`.Traversible.get_children` * :meth:`.Traversible._copy_internals` * :meth:`.Traversible._gen_cache_key` Subclasses can also implement these methods directly, particularly for the :meth:`.Traversible._copy_internals` method, when special steps are needed. .. versionadded:: 1.4 """ def dispatch(self, visit_symbol): """Given a method from :class:`.InternalTraversal`, return the corresponding method on a subclass. """ name = self._dispatch_lookup[visit_symbol] return getattr(self, name, None) def run_generated_dispatch( self, target, internal_dispatch, generate_dispatcher_name ): try: dispatcher = target.__class__.__dict__[generate_dispatcher_name] except KeyError: # most of the dispatchers are generated up front # in sqlalchemy/sql/__init__.py -> # traversals.py-> _preconfigure_traversals(). # this block will generate any remaining dispatchers. dispatcher = self.generate_dispatch( target.__class__, internal_dispatch, generate_dispatcher_name ) return dispatcher(target, self) def generate_dispatch( self, target_cls, internal_dispatch, generate_dispatcher_name ): dispatcher = _generate_dispatcher( self, internal_dispatch, generate_dispatcher_name ) # assert isinstance(target_cls, type) setattr(target_cls, generate_dispatcher_name, dispatcher) return dispatcher dp_has_cache_key = symbol("HC") """Visit a :class:`.HasCacheKey` object.""" dp_has_cache_key_list = symbol("HL") """Visit a list of :class:`.HasCacheKey` objects.""" dp_clauseelement = symbol("CE") """Visit a :class:`_expression.ClauseElement` object.""" dp_fromclause_canonical_column_collection = symbol("FC") """Visit a :class:`_expression.FromClause` object in the context of the ``columns`` attribute. The column collection is "canonical", meaning it is the originally defined location of the :class:`.ColumnClause` objects. Right now this means that the object being visited is a :class:`_expression.TableClause` or :class:`_schema.Table` object only. """ dp_clauseelement_tuples = symbol("CTS") """Visit a list of tuples which contain :class:`_expression.ClauseElement` objects. """ dp_clauseelement_list = symbol("CL") """Visit a list of :class:`_expression.ClauseElement` objects. """ dp_clauseelement_tuple = symbol("CT") """Visit a tuple of :class:`_expression.ClauseElement` objects. """ dp_executable_options = symbol("EO") dp_with_context_options = symbol("WC") dp_fromclause_ordered_set = symbol("CO") """Visit an ordered set of :class:`_expression.FromClause` objects. """ dp_string = symbol("S") """Visit a plain string value. Examples include table and column names, bound parameter keys, special keywords such as "UNION", "UNION ALL". The string value is considered to be significant for cache key generation. """ dp_string_list = symbol("SL") """Visit a list of strings.""" dp_anon_name = symbol("AN") """Visit a potentially "anonymized" string value. The string value is considered to be significant for cache key generation. """ dp_boolean = symbol("B") """Visit a boolean value. The boolean value is considered to be significant for cache key generation. """ dp_operator = symbol("O") """Visit an operator. The operator is a function from the :mod:`sqlalchemy.sql.operators` module. The operator value is considered to be significant for cache key generation. """ dp_type = symbol("T") """Visit a :class:`.TypeEngine` object The type object is considered to be significant for cache key generation. """ dp_plain_dict = symbol("PD") """Visit a dictionary with string keys. The keys of the dictionary should be strings, the values should be immutable and hashable. The dictionary is considered to be significant for cache key generation. """ dp_dialect_options = symbol("DO") """Visit a dialect options structure.""" dp_string_clauseelement_dict = symbol("CD") """Visit a dictionary of string keys to :class:`_expression.ClauseElement` objects. """ dp_string_multi_dict = symbol("MD") """Visit a dictionary of string keys to values which may either be plain immutable/hashable or :class:`.HasCacheKey` objects. """ dp_annotations_key = symbol("AK") """Visit the _annotations_cache_key element. This is a dictionary of additional information about a ClauseElement that modifies its role. It should be included when comparing or caching objects, however generating this key is relatively expensive. Visitors should check the "_annotations" dict for non-None first before creating this key. """ dp_plain_obj = symbol("PO") """Visit a plain python object. The value should be immutable and hashable, such as an integer. The value is considered to be significant for cache key generation. """ dp_named_ddl_element = symbol("DD") """Visit a simple named DDL element. The current object used by this method is the :class:`.Sequence`. The object is only considered to be important for cache key generation as far as its name, but not any other aspects of it. """ dp_prefix_sequence = symbol("PS") """Visit the sequence represented by :class:`_expression.HasPrefixes` or :class:`_expression.HasSuffixes`. """ dp_table_hint_list = symbol("TH") """Visit the ``_hints`` collection of a :class:`_expression.Select` object. """ dp_setup_join_tuple = symbol("SJ") dp_memoized_select_entities = symbol("ME") dp_statement_hint_list = symbol("SH") """Visit the ``_statement_hints`` collection of a :class:`_expression.Select` object. """ dp_unknown_structure = symbol("UK") """Visit an unknown structure. """ dp_dml_ordered_values = symbol("DML_OV") """Visit the values() ordered tuple list of an :class:`_expression.Update` object.""" dp_dml_values = symbol("DML_V") """Visit the values() dictionary of a :class:`.ValuesBase` (e.g. Insert or Update) object. """ dp_dml_multi_values = symbol("DML_MV") """Visit the values() multi-valued list of dictionaries of an :class:`_expression.Insert` object. """ dp_propagate_attrs = symbol("PA") """Visit the propagate attrs dict. This hardcodes to the particular elements we care about right now.""" class ExtendedInternalTraversal(InternalTraversal): """Defines additional symbols that are useful in caching applications. Traversals for :class:`_expression.ClauseElement` objects only need to use those symbols present in :class:`.InternalTraversal`. However, for additional caching use cases within the ORM, symbols dealing with the :class:`.HasCacheKey` class are added here. """ dp_ignore = symbol("IG") """Specify an object that should be ignored entirely. This currently applies function call argument caching where some arguments should not be considered to be part of a cache key. """ dp_inspectable = symbol("IS") """Visit an inspectable object where the return value is a :class:`.HasCacheKey` object.""" dp_multi = symbol("M") """Visit an object that may be a :class:`.HasCacheKey` or may be a plain hashable object.""" dp_multi_list = symbol("MT") """Visit a tuple containing elements that may be :class:`.HasCacheKey` or may be a plain hashable object.""" dp_has_cache_key_tuples = symbol("HT") """Visit a list of tuples which contain :class:`.HasCacheKey` objects. """ dp_inspectable_list = symbol("IL") """Visit a list of inspectable objects which upon inspection are HasCacheKey objects.""" class ExternalTraversal(object): """Base class for visitor objects which can traverse externally using the :func:`.visitors.traverse` function. Direct usage of the :func:`.visitors.traverse` function is usually preferred. """ __traverse_options__ = {} def traverse_single(self, obj, **kw): for v in self.visitor_iterator: meth = getattr(v, "visit_%s" % obj.__visit_name__, None) if meth: return meth(obj, **kw) def iterate(self, obj): """Traverse the given expression structure, returning an iterator of all elements. """ return iterate(obj, self.__traverse_options__) def traverse(self, obj): """Traverse and visit the given expression structure.""" return traverse(obj, self.__traverse_options__, self._visitor_dict) @util.memoized_property def _visitor_dict(self): visitors = {} for name in dir(self): if name.startswith("visit_"): visitors[name[6:]] = getattr(self, name) return visitors @property def visitor_iterator(self): """Iterate through this visitor and each 'chained' visitor.""" v = self while v: yield v v = getattr(v, "_next", None) def chain(self, visitor): """'Chain' an additional ClauseVisitor onto this ClauseVisitor. The chained visitor will receive all visit events after this one. """ tail = list(self.visitor_iterator)[-1] tail._next = visitor return self class CloningExternalTraversal(ExternalTraversal): """Base class for visitor objects which can traverse using the :func:`.visitors.cloned_traverse` function. Direct usage of the :func:`.visitors.cloned_traverse` function is usually preferred. """ def copy_and_process(self, list_): """Apply cloned traversal to the given list of elements, and return the new list. """ return [self.traverse(x) for x in list_] def traverse(self, obj): """Traverse and visit the given expression structure.""" return cloned_traverse( obj, self.__traverse_options__, self._visitor_dict ) class ReplacingExternalTraversal(CloningExternalTraversal): """Base class for visitor objects which can traverse using the :func:`.visitors.replacement_traverse` function. Direct usage of the :func:`.visitors.replacement_traverse` function is usually preferred. """ def replace(self, elem): """Receive pre-copied elements during a cloning traversal. If the method returns a new element, the element is used instead of creating a simple copy of the element. Traversal will halt on the newly returned element if it is re-encountered. """ return None def traverse(self, obj): """Traverse and visit the given expression structure.""" def replace(elem): for v in self.visitor_iterator: e = v.replace(elem) if e is not None: return e return replacement_traverse(obj, self.__traverse_options__, replace) # backwards compatibility Visitable = Traversible VisitableType = TraversibleType ClauseVisitor = ExternalTraversal CloningVisitor = CloningExternalTraversal ReplacingCloningVisitor = ReplacingExternalTraversal def iterate(obj, opts=util.immutabledict()): r"""Traverse the given expression structure, returning an iterator. Traversal is configured to be breadth-first. The central API feature used by the :func:`.visitors.iterate` function is the :meth:`_expression.ClauseElement.get_children` method of :class:`_expression.ClauseElement` objects. This method should return all the :class:`_expression.ClauseElement` objects which are associated with a particular :class:`_expression.ClauseElement` object. For example, a :class:`.Case` structure will refer to a series of :class:`_expression.ColumnElement` objects within its "whens" and "else\_" member variables. :param obj: :class:`_expression.ClauseElement` structure to be traversed :param opts: dictionary of iteration options. This dictionary is usually empty in modern usage. """ yield obj children = obj.get_children(**opts) if not children: return stack = deque([children]) while stack: t_iterator = stack.popleft() for t in t_iterator: yield t stack.append(t.get_children(**opts)) def traverse_using(iterator, obj, visitors): """Visit the given expression structure using the given iterator of objects. :func:`.visitors.traverse_using` is usually called internally as the result of the :func:`.visitors.traverse` function. :param iterator: an iterable or sequence which will yield :class:`_expression.ClauseElement` structures; the iterator is assumed to be the product of the :func:`.visitors.iterate` function. :param obj: the :class:`_expression.ClauseElement` that was used as the target of the :func:`.iterate` function. :param visitors: dictionary of visit functions. See :func:`.traverse` for details on this dictionary. .. seealso:: :func:`.traverse` """ for target in iterator: meth = visitors.get(target.__visit_name__, None) if meth: meth(target) return obj def traverse(obj, opts, visitors): """Traverse and visit the given expression structure using the default iterator. e.g.:: from sqlalchemy.sql import visitors stmt = select(some_table).where(some_table.c.foo == 'bar') def visit_bindparam(bind_param): print("found bound value: %s" % bind_param.value) visitors.traverse(stmt, {}, {"bindparam": visit_bindparam}) The iteration of objects uses the :func:`.visitors.iterate` function, which does a breadth-first traversal using a stack. :param obj: :class:`_expression.ClauseElement` structure to be traversed :param opts: dictionary of iteration options. This dictionary is usually empty in modern usage. :param visitors: dictionary of visit functions. The dictionary should have strings as keys, each of which would correspond to the ``__visit_name__`` of a particular kind of SQL expression object, and callable functions as values, each of which represents a visitor function for that kind of object. """ return traverse_using(iterate(obj, opts), obj, visitors) def cloned_traverse(obj, opts, visitors): """Clone the given expression structure, allowing modifications by visitors. Traversal usage is the same as that of :func:`.visitors.traverse`. The visitor functions present in the ``visitors`` dictionary may also modify the internals of the given structure as the traversal proceeds. The central API feature used by the :func:`.visitors.cloned_traverse` and :func:`.visitors.replacement_traverse` functions, in addition to the :meth:`_expression.ClauseElement.get_children` function that is used to achieve the iteration, is the :meth:`_expression.ClauseElement._copy_internals` method. For a :class:`_expression.ClauseElement` structure to support cloning and replacement traversals correctly, it needs to be able to pass a cloning function into its internal members in order to make copies of them. .. seealso:: :func:`.visitors.traverse` :func:`.visitors.replacement_traverse` """ cloned = {} stop_on = set(opts.get("stop_on", [])) def deferred_copy_internals(obj): return cloned_traverse(obj, opts, visitors) def clone(elem, **kw): if elem in stop_on: return elem else: if id(elem) not in cloned: if "replace" in kw: newelem = kw["replace"](elem) if newelem is not None: cloned[id(elem)] = newelem return newelem cloned[id(elem)] = newelem = elem._clone(**kw) newelem._copy_internals(clone=clone, **kw) meth = visitors.get(newelem.__visit_name__, None) if meth: meth(newelem) return cloned[id(elem)] if obj is not None: obj = clone( obj, deferred_copy_internals=deferred_copy_internals, **opts ) clone = None # remove gc cycles return obj def replacement_traverse(obj, opts, replace): """Clone the given expression structure, allowing element replacement by a given replacement function. This function is very similar to the :func:`.visitors.cloned_traverse` function, except instead of being passed a dictionary of visitors, all elements are unconditionally passed into the given replace function. The replace function then has the option to return an entirely new object which will replace the one given. If it returns ``None``, then the object is kept in place. The difference in usage between :func:`.visitors.cloned_traverse` and :func:`.visitors.replacement_traverse` is that in the former case, an already-cloned object is passed to the visitor function, and the visitor function can then manipulate the internal state of the object. In the case of the latter, the visitor function should only return an entirely different object, or do nothing. The use case for :func:`.visitors.replacement_traverse` is that of replacing a FROM clause inside of a SQL structure with a different one, as is a common use case within the ORM. """ cloned = {} stop_on = {id(x) for x in opts.get("stop_on", [])} def deferred_copy_internals(obj): return replacement_traverse(obj, opts, replace) def clone(elem, **kw): if ( id(elem) in stop_on or "no_replacement_traverse" in elem._annotations ): return elem else: newelem = replace(elem) if newelem is not None: stop_on.add(id(newelem)) return newelem else: # base "already seen" on id(), not hash, so that we don't # replace an Annotated element with its non-annotated one, and # vice versa id_elem = id(elem) if id_elem not in cloned: if "replace" in kw: newelem = kw["replace"](elem) if newelem is not None: cloned[id_elem] = newelem return newelem cloned[id_elem] = newelem = elem._clone(**kw) newelem._copy_internals(clone=clone, **kw) return cloned[id_elem] if obj is not None: obj = clone( obj, deferred_copy_internals=deferred_copy_internals, **opts ) clone = None # remove gc cycles return obj