# sql/selectable.py # Copyright (C) 2005-2021 the SQLAlchemy authors and contributors # # # This module is part of SQLAlchemy and is released under # the MIT License: http://www.opensource.org/licenses/mit-license.php """The :class:`_expression.FromClause` class of SQL expression elements, representing SQL tables and derived rowsets. """ import collections import itertools from operator import attrgetter from . import coercions from . import operators from . import roles from . import traversals from . import type_api from . import visitors from .annotation import Annotated from .annotation import SupportsCloneAnnotations from .base import _clone from .base import _cloned_difference from .base import _cloned_intersection from .base import _entity_namespace_key from .base import _expand_cloned from .base import _from_objects from .base import _generative from .base import _select_iterables from .base import CacheableOptions from .base import ColumnCollection from .base import ColumnSet from .base import CompileState from .base import DedupeColumnCollection from .base import Executable from .base import Generative from .base import HasCompileState from .base import HasMemoized from .base import Immutable from .base import prefix_anon_map from .coercions import _document_text_coercion from .elements import _anonymous_label from .elements import and_ from .elements import BindParameter from .elements import BooleanClauseList from .elements import ClauseElement from .elements import ClauseList from .elements import ColumnClause from .elements import GroupedElement from .elements import Grouping from .elements import literal_column from .elements import TableValuedColumn from .elements import UnaryExpression from .visitors import InternalTraversal from .. import exc from .. import util from ..inspection import inspect class _OffsetLimitParam(BindParameter): inherit_cache = True @property def _limit_offset_value(self): return self.effective_value @util.deprecated( "1.4", "The standalone :func:`.subquery` function is deprecated " "and will be removed in a future release. Use select().subquery().", ) def subquery(alias, *args, **kwargs): r"""Return an :class:`.Subquery` object derived from a :class:`_expression.Select`. :param alias: the alias name for the subquery :param \*args, \**kwargs: all other arguments are passed through to the :func:`_expression.select` function. """ return Select.create_legacy_select(*args, **kwargs).subquery(alias) class ReturnsRows(roles.ReturnsRowsRole, ClauseElement): """The base-most class for Core constructs that have some concept of columns that can represent rows. While the SELECT statement and TABLE are the primary things we think of in this category, DML like INSERT, UPDATE and DELETE can also specify RETURNING which means they can be used in CTEs and other forms, and PostgreSQL has functions that return rows also. .. versionadded:: 1.4 """ _is_returns_rows = True # sub-elements of returns_rows _is_from_clause = False _is_select_statement = False _is_lateral = False @property def selectable(self): return self @property def _all_selected_columns(self): """A sequence of column expression objects that represents the "selected" columns of this :class:`_expression.ReturnsRows`. This is typically equivalent to .exported_columns except it is delivered in the form of a straight sequence and not keyed :class:`_expression.ColumnCollection`. """ raise NotImplementedError() @property def exported_columns(self): """A :class:`_expression.ColumnCollection` that represents the "exported" columns of this :class:`_expression.ReturnsRows`. The "exported" columns represent the collection of :class:`_expression.ColumnElement` expressions that are rendered by this SQL construct. There are primary varieties which are the "FROM clause columns" of a FROM clause, such as a table, join, or subquery, the "SELECTed columns", which are the columns in the "columns clause" of a SELECT statement, and the RETURNING columns in a DML statement.. .. versionadded:: 1.4 .. seealso:: :attr:`_expression.FromClause.exported_columns` :attr:`_expression.SelectBase.exported_columns` """ raise NotImplementedError() class Selectable(ReturnsRows): """Mark a class as being selectable.""" __visit_name__ = "selectable" is_selectable = True def _refresh_for_new_column(self, column): raise NotImplementedError() def lateral(self, name=None): """Return a LATERAL alias of this :class:`_expression.Selectable`. The return value is the :class:`_expression.Lateral` construct also provided by the top-level :func:`_expression.lateral` function. .. versionadded:: 1.1 .. seealso:: :ref:`lateral_selects` - overview of usage. """ return Lateral._construct(self, name) @util.deprecated( "1.4", message="The :meth:`.Selectable.replace_selectable` method is " "deprecated, and will be removed in a future release. Similar " "functionality is available via the sqlalchemy.sql.visitors module.", ) @util.preload_module("sqlalchemy.sql.util") def replace_selectable(self, old, alias): """Replace all occurrences of :class:`_expression.FromClause` 'old' with the given :class:`_expression.Alias` object, returning a copy of this :class:`_expression.FromClause`. """ return util.preloaded.sql_util.ClauseAdapter(alias).traverse(self) def corresponding_column(self, column, require_embedded=False): """Given a :class:`_expression.ColumnElement`, return the exported :class:`_expression.ColumnElement` object from the :attr:`_expression.Selectable.exported_columns` collection of this :class:`_expression.Selectable` which corresponds to that original :class:`_expression.ColumnElement` via a common ancestor column. :param column: the target :class:`_expression.ColumnElement` to be matched. :param require_embedded: only return corresponding columns for the given :class:`_expression.ColumnElement`, if the given :class:`_expression.ColumnElement` is actually present within a sub-element of this :class:`_expression.Selectable`. Normally the column will match if it merely shares a common ancestor with one of the exported columns of this :class:`_expression.Selectable`. .. seealso:: :attr:`_expression.Selectable.exported_columns` - the :class:`_expression.ColumnCollection` that is used for the operation. :meth:`_expression.ColumnCollection.corresponding_column` - implementation method. """ return self.exported_columns.corresponding_column( column, require_embedded ) class HasPrefixes(object): _prefixes = () _has_prefixes_traverse_internals = [ ("_prefixes", InternalTraversal.dp_prefix_sequence) ] @_generative @_document_text_coercion( "expr", ":meth:`_expression.HasPrefixes.prefix_with`", ":paramref:`.HasPrefixes.prefix_with.*expr`", ) def prefix_with(self, *expr, **kw): r"""Add one or more expressions following the statement keyword, i.e. SELECT, INSERT, UPDATE, or DELETE. Generative. This is used to support backend-specific prefix keywords such as those provided by MySQL. E.g.:: stmt = table.insert().prefix_with("LOW_PRIORITY", dialect="mysql") # MySQL 5.7 optimizer hints stmt = select(table).prefix_with( "/*+ BKA(t1) */", dialect="mysql") Multiple prefixes can be specified by multiple calls to :meth:`_expression.HasPrefixes.prefix_with`. :param \*expr: textual or :class:`_expression.ClauseElement` construct which will be rendered following the INSERT, UPDATE, or DELETE keyword. :param \**kw: A single keyword 'dialect' is accepted. This is an optional string dialect name which will limit rendering of this prefix to only that dialect. """ dialect = kw.pop("dialect", None) if kw: raise exc.ArgumentError( "Unsupported argument(s): %s" % ",".join(kw) ) self._setup_prefixes(expr, dialect) def _setup_prefixes(self, prefixes, dialect=None): self._prefixes = self._prefixes + tuple( [ (coercions.expect(roles.StatementOptionRole, p), dialect) for p in prefixes ] ) class HasSuffixes(object): _suffixes = () _has_suffixes_traverse_internals = [ ("_suffixes", InternalTraversal.dp_prefix_sequence) ] @_generative @_document_text_coercion( "expr", ":meth:`_expression.HasSuffixes.suffix_with`", ":paramref:`.HasSuffixes.suffix_with.*expr`", ) def suffix_with(self, *expr, **kw): r"""Add one or more expressions following the statement as a whole. This is used to support backend-specific suffix keywords on certain constructs. E.g.:: stmt = select(col1, col2).cte().suffix_with( "cycle empno set y_cycle to 1 default 0", dialect="oracle") Multiple suffixes can be specified by multiple calls to :meth:`_expression.HasSuffixes.suffix_with`. :param \*expr: textual or :class:`_expression.ClauseElement` construct which will be rendered following the target clause. :param \**kw: A single keyword 'dialect' is accepted. This is an optional string dialect name which will limit rendering of this suffix to only that dialect. """ dialect = kw.pop("dialect", None) if kw: raise exc.ArgumentError( "Unsupported argument(s): %s" % ",".join(kw) ) self._setup_suffixes(expr, dialect) def _setup_suffixes(self, suffixes, dialect=None): self._suffixes = self._suffixes + tuple( [ (coercions.expect(roles.StatementOptionRole, p), dialect) for p in suffixes ] ) class HasHints(object): _hints = util.immutabledict() _statement_hints = () _has_hints_traverse_internals = [ ("_statement_hints", InternalTraversal.dp_statement_hint_list), ("_hints", InternalTraversal.dp_table_hint_list), ] def with_statement_hint(self, text, dialect_name="*"): """Add a statement hint to this :class:`_expression.Select` or other selectable object. This method is similar to :meth:`_expression.Select.with_hint` except that it does not require an individual table, and instead applies to the statement as a whole. Hints here are specific to the backend database and may include directives such as isolation levels, file directives, fetch directives, etc. .. versionadded:: 1.0.0 .. seealso:: :meth:`_expression.Select.with_hint` :meth:`_expression.Select.prefix_with` - generic SELECT prefixing which also can suit some database-specific HINT syntaxes such as MySQL optimizer hints """ return self.with_hint(None, text, dialect_name) @_generative def with_hint(self, selectable, text, dialect_name="*"): r"""Add an indexing or other executional context hint for the given selectable to this :class:`_expression.Select` or other selectable object. The text of the hint is rendered in the appropriate location for the database backend in use, relative to the given :class:`_schema.Table` or :class:`_expression.Alias` passed as the ``selectable`` argument. The dialect implementation typically uses Python string substitution syntax with the token ``%(name)s`` to render the name of the table or alias. E.g. when using Oracle, the following:: select(mytable).\ with_hint(mytable, "index(%(name)s ix_mytable)") Would render SQL as:: select /*+ index(mytable ix_mytable) */ ... from mytable The ``dialect_name`` option will limit the rendering of a particular hint to a particular backend. Such as, to add hints for both Oracle and Sybase simultaneously:: select(mytable).\ with_hint(mytable, "index(%(name)s ix_mytable)", 'oracle').\ with_hint(mytable, "WITH INDEX ix_mytable", 'sybase') .. seealso:: :meth:`_expression.Select.with_statement_hint` """ if selectable is None: self._statement_hints += ((dialect_name, text),) else: self._hints = self._hints.union( { ( coercions.expect(roles.FromClauseRole, selectable), dialect_name, ): text } ) class FromClause(roles.AnonymizedFromClauseRole, Selectable): """Represent an element that can be used within the ``FROM`` clause of a ``SELECT`` statement. The most common forms of :class:`_expression.FromClause` are the :class:`_schema.Table` and the :func:`_expression.select` constructs. Key features common to all :class:`_expression.FromClause` objects include: * a :attr:`.c` collection, which provides per-name access to a collection of :class:`_expression.ColumnElement` objects. * a :attr:`.primary_key` attribute, which is a collection of all those :class:`_expression.ColumnElement` objects that indicate the ``primary_key`` flag. * Methods to generate various derivations of a "from" clause, including :meth:`_expression.FromClause.alias`, :meth:`_expression.FromClause.join`, :meth:`_expression.FromClause.select`. """ __visit_name__ = "fromclause" named_with_column = False _hide_froms = [] schema = None """Define the 'schema' attribute for this :class:`_expression.FromClause`. This is typically ``None`` for most objects except that of :class:`_schema.Table`, where it is taken as the value of the :paramref:`_schema.Table.schema` argument. """ is_selectable = True _is_from_clause = True _is_join = False _use_schema_map = False @util.deprecated_params( whereclause=( "2.0", "The :paramref:`_sql.FromClause.select().whereclause` parameter " "is deprecated and will be removed in version 2.0. " "Please make use of " "the :meth:`.Select.where` " "method to add WHERE criteria to the SELECT statement.", ), kwargs=( "2.0", "The :meth:`_sql.FromClause.select` method will no longer accept " "keyword arguments in version 2.0. Please use generative methods " "from the " ":class:`_sql.Select` construct in order to apply additional " "modifications.", ), ) def select(self, whereclause=None, **kwargs): r"""Return a SELECT of this :class:`_expression.FromClause`. e.g.:: stmt = some_table.select().where(some_table.c.id == 5) :param whereclause: a WHERE clause, equivalent to calling the :meth:`_sql.Select.where` method. :param \**kwargs: additional keyword arguments are passed to the legacy constructor for :class:`_sql.Select` described at :meth:`_sql.Select.create_legacy_select`. .. seealso:: :func:`_expression.select` - general purpose method which allows for arbitrary column lists. """ if whereclause is not None: kwargs["whereclause"] = whereclause return Select._create_select_from_fromclause(self, [self], **kwargs) def join(self, right, onclause=None, isouter=False, full=False): """Return a :class:`_expression.Join` from this :class:`_expression.FromClause` to another :class:`FromClause`. E.g.:: from sqlalchemy import join j = user_table.join(address_table, user_table.c.id == address_table.c.user_id) stmt = select(user_table).select_from(j) would emit SQL along the lines of:: SELECT user.id, user.name FROM user JOIN address ON user.id = address.user_id :param right: the right side of the join; this is any :class:`_expression.FromClause` object such as a :class:`_schema.Table` object, and may also be a selectable-compatible object such as an ORM-mapped class. :param onclause: a SQL expression representing the ON clause of the join. If left at ``None``, :meth:`_expression.FromClause.join` will attempt to join the two tables based on a foreign key relationship. :param isouter: if True, render a LEFT OUTER JOIN, instead of JOIN. :param full: if True, render a FULL OUTER JOIN, instead of LEFT OUTER JOIN. Implies :paramref:`.FromClause.join.isouter`. .. versionadded:: 1.1 .. seealso:: :func:`_expression.join` - standalone function :class:`_expression.Join` - the type of object produced """ return Join(self, right, onclause, isouter, full) def outerjoin(self, right, onclause=None, full=False): """Return a :class:`_expression.Join` from this :class:`_expression.FromClause` to another :class:`FromClause`, with the "isouter" flag set to True. E.g.:: from sqlalchemy import outerjoin j = user_table.outerjoin(address_table, user_table.c.id == address_table.c.user_id) The above is equivalent to:: j = user_table.join( address_table, user_table.c.id == address_table.c.user_id, isouter=True) :param right: the right side of the join; this is any :class:`_expression.FromClause` object such as a :class:`_schema.Table` object, and may also be a selectable-compatible object such as an ORM-mapped class. :param onclause: a SQL expression representing the ON clause of the join. If left at ``None``, :meth:`_expression.FromClause.join` will attempt to join the two tables based on a foreign key relationship. :param full: if True, render a FULL OUTER JOIN, instead of LEFT OUTER JOIN. .. versionadded:: 1.1 .. seealso:: :meth:`_expression.FromClause.join` :class:`_expression.Join` """ return Join(self, right, onclause, True, full) def alias(self, name=None, flat=False): """Return an alias of this :class:`_expression.FromClause`. E.g.:: a2 = some_table.alias('a2') The above code creates an :class:`_expression.Alias` object which can be used as a FROM clause in any SELECT statement. .. seealso:: :ref:`core_tutorial_aliases` :func:`_expression.alias` """ return Alias._construct(self, name) @util.preload_module("sqlalchemy.sql.sqltypes") def table_valued(self): """Return a :class:`_sql.TableValuedColumn` object for this :class:`_expression.FromClause`. A :class:`_sql.TableValuedColumn` is a :class:`_sql.ColumnElement` that represents a complete row in a table. Support for this construct is backend dependent, and is supported in various forms by backends such as PostgreSQL, Oracle and SQL Server. E.g.:: >>> from sqlalchemy import select, column, func, table >>> a = table("a", column("id"), column("x"), column("y")) >>> stmt = select(func.row_to_json(a.table_valued())) >>> print(stmt) SELECT row_to_json(a) AS row_to_json_1 FROM a .. versionadded:: 1.4.0b2 .. seealso:: :ref:`tutorial_functions` - in the :ref:`unified_tutorial` """ return TableValuedColumn(self, type_api.TABLEVALUE) def tablesample(self, sampling, name=None, seed=None): """Return a TABLESAMPLE alias of this :class:`_expression.FromClause`. The return value is the :class:`_expression.TableSample` construct also provided by the top-level :func:`_expression.tablesample` function. .. versionadded:: 1.1 .. seealso:: :func:`_expression.tablesample` - usage guidelines and parameters """ return TableSample._construct(self, sampling, name, seed) def is_derived_from(self, fromclause): """Return ``True`` if this :class:`_expression.FromClause` is 'derived' from the given ``FromClause``. An example would be an Alias of a Table is derived from that Table. """ # this is essentially an "identity" check in the base class. # Other constructs override this to traverse through # contained elements. return fromclause in self._cloned_set def _is_lexical_equivalent(self, other): """Return ``True`` if this :class:`_expression.FromClause` and the other represent the same lexical identity. This tests if either one is a copy of the other, or if they are the same via annotation identity. """ return self._cloned_set.intersection(other._cloned_set) @property def description(self): """A brief description of this :class:`_expression.FromClause`. Used primarily for error message formatting. """ return getattr(self, "name", self.__class__.__name__ + " object") def _generate_fromclause_column_proxies(self, fromclause): fromclause._columns._populate_separate_keys( col._make_proxy(fromclause) for col in self.c ) @property def exported_columns(self): """A :class:`_expression.ColumnCollection` that represents the "exported" columns of this :class:`_expression.Selectable`. The "exported" columns for a :class:`_expression.FromClause` object are synonymous with the :attr:`_expression.FromClause.columns` collection. .. versionadded:: 1.4 .. seealso:: :attr:`_expression.Selectable.exported_columns` :attr:`_expression.SelectBase.exported_columns` """ return self.columns @util.memoized_property def columns(self): """A named-based collection of :class:`_expression.ColumnElement` objects maintained by this :class:`_expression.FromClause`. The :attr:`.columns`, or :attr:`.c` collection, is the gateway to the construction of SQL expressions using table-bound or other selectable-bound columns:: select(mytable).where(mytable.c.somecolumn == 5) :return: a :class:`.ColumnCollection` object. """ if "_columns" not in self.__dict__: self._init_collections() self._populate_column_collection() return self._columns.as_immutable() @property def entity_namespace(self): """Return a namespace used for name-based access in SQL expressions. This is the namespace that is used to resolve "filter_by()" type expressions, such as:: stmt.filter_by(address='some address') It defaults to the ``.c`` collection, however internally it can be overridden using the "entity_namespace" annotation to deliver alternative results. """ return self.columns @util.memoized_property def primary_key(self): """Return the iterable collection of :class:`_schema.Column` objects which comprise the primary key of this :class:`_selectable.FromClause`. For a :class:`_schema.Table` object, this collection is represented by the :class:`_schema.PrimaryKeyConstraint` which itself is an iterable collection of :class:`_schema.Column` objects. """ self._init_collections() self._populate_column_collection() return self.primary_key @util.memoized_property def foreign_keys(self): """Return the collection of :class:`_schema.ForeignKey` marker objects which this FromClause references. Each :class:`_schema.ForeignKey` is a member of a :class:`_schema.Table`-wide :class:`_schema.ForeignKeyConstraint`. .. seealso:: :attr:`_schema.Table.foreign_key_constraints` """ self._init_collections() self._populate_column_collection() return self.foreign_keys def _reset_column_collection(self): """Reset the attributes linked to the ``FromClause.c`` attribute. This collection is separate from all the other memoized things as it has shown to be sensitive to being cleared out in situations where enclosing code, typically in a replacement traversal scenario, has already established strong relationships with the exported columns. The collection is cleared for the case where a table is having a column added to it as well as within a Join during copy internals. """ for key in ["_columns", "columns", "primary_key", "foreign_keys"]: self.__dict__.pop(key, None) c = property( attrgetter("columns"), doc=""" A named-based collection of :class:`_expression.ColumnElement` objects maintained by this :class:`_expression.FromClause`. The :attr:`_sql.FromClause.c` attribute is an alias for the :attr:`_sql.FromClause.columns` atttribute. :return: a :class:`.ColumnCollection` """, ) _select_iterable = property(attrgetter("columns")) def _init_collections(self): assert "_columns" not in self.__dict__ assert "primary_key" not in self.__dict__ assert "foreign_keys" not in self.__dict__ self._columns = ColumnCollection() self.primary_key = ColumnSet() self.foreign_keys = set() @property def _cols_populated(self): return "_columns" in self.__dict__ def _populate_column_collection(self): """Called on subclasses to establish the .c collection. Each implementation has a different way of establishing this collection. """ def _refresh_for_new_column(self, column): """Given a column added to the .c collection of an underlying selectable, produce the local version of that column, assuming this selectable ultimately should proxy this column. this is used to "ping" a derived selectable to add a new column to its .c. collection when a Column has been added to one of the Table objects it ultimately derives from. If the given selectable hasn't populated its .c. collection yet, it should at least pass on the message to the contained selectables, but it will return None. This method is currently used by Declarative to allow Table columns to be added to a partially constructed inheritance mapping that may have already produced joins. The method isn't public right now, as the full span of implications and/or caveats aren't yet clear. It's also possible that this functionality could be invoked by default via an event, which would require that selectables maintain a weak referencing collection of all derivations. """ self._reset_column_collection() def _anonymous_fromclause(self, name=None, flat=False): return self.alias(name=name) LABEL_STYLE_NONE = util.symbol( "LABEL_STYLE_NONE", """Label style indicating no automatic labeling should be applied to the columns clause of a SELECT statement. Below, the columns named ``columna`` are both rendered as is, meaning that the name ``columna`` can only refer to the first occurrence of this name within a result set, as well as if the statement were used as a subquery:: >>> from sqlalchemy import table, column, select, true, LABEL_STYLE_NONE >>> table1 = table("table1", column("columna"), column("columnb")) >>> table2 = table("table2", column("columna"), column("columnc")) >>> print(select(table1, table2).join(table2, true()).set_label_style(LABEL_STYLE_NONE)) SELECT table1.columna, table1.columnb, table2.columna, table2.columnc FROM table1 JOIN table2 ON true Used with the :meth:`_sql.Select.set_label_style` method. .. versionadded:: 1.4 """, # noqa E501 ) LABEL_STYLE_TABLENAME_PLUS_COL = util.symbol( "LABEL_STYLE_TABLENAME_PLUS_COL", """Label style indicating all columns should be labeled as ``_`` when generating the columns clause of a SELECT statement, to disambiguate same-named columns referenced from different tables, aliases, or subqueries. Below, all column names are given a label so that the two same-named columns ``columna`` are disambiguated as ``table1_columna`` and ``table2_columna`:: >>> from sqlalchemy import table, column, select, true, LABEL_STYLE_TABLENAME_PLUS_COL >>> table1 = table("table1", column("columna"), column("columnb")) >>> table2 = table("table2", column("columna"), column("columnc")) >>> print(select(table1, table2).join(table2, true()).set_label_style(LABEL_STYLE_TABLENAME_PLUS_COL)) SELECT table1.columna AS table1_columna, table1.columnb AS table1_columnb, table2.columna AS table2_columna, table2.columnc AS table2_columnc FROM table1 JOIN table2 ON true Used with the :meth:`_sql.GenerativeSelect.set_label_style` method. Equivalent to the legacy method ``Select.apply_labels()``; :data:`_sql.LABEL_STYLE_TABLENAME_PLUS_COL` is SQLAlchemy's legacy auto-labeling style. :data:`_sql.LABEL_STYLE_DISAMBIGUATE_ONLY` provides a less intrusive approach to disambiguation of same-named column expressions. .. versionadded:: 1.4 """, # noqa E501 ) LABEL_STYLE_DISAMBIGUATE_ONLY = util.symbol( "LABEL_STYLE_DISAMBIGUATE_ONLY", """Label style indicating that columns with a name that conflicts with an existing name should be labeled with a semi-anonymizing label when generating the columns clause of a SELECT statement. Below, most column names are left unaffected, except for the second occurrence of the name ``columna``, which is labeled using the label ``columna_1`` to disambiguate it from that of ``tablea.columna``:: >>> from sqlalchemy import table, column, select, true, LABEL_STYLE_DISAMBIGUATE_ONLY >>> table1 = table("table1", column("columna"), column("columnb")) >>> table2 = table("table2", column("columna"), column("columnc")) >>> print(select(table1, table2).join(table2, true()).set_label_style(LABEL_STYLE_DISAMBIGUATE_ONLY)) SELECT table1.columna, table1.columnb, table2.columna AS columna_1, table2.columnc FROM table1 JOIN table2 ON true Used with the :meth:`_sql.GenerativeSelect.set_label_style` method, :data:`_sql.LABEL_STYLE_DISAMBIGUATE_ONLY` is the default labeling style for all SELECT statements outside of :term:`1.x style` ORM queries. .. versionadded:: 1.4 """, # noqa: E501, ) LABEL_STYLE_DEFAULT = LABEL_STYLE_DISAMBIGUATE_ONLY """The default label style, refers to :data:`_sql.LABEL_STYLE_DISAMBIGUATE_ONLY`. .. versionadded:: 1.4 """ class Join(roles.DMLTableRole, FromClause): """Represent a ``JOIN`` construct between two :class:`_expression.FromClause` elements. The public constructor function for :class:`_expression.Join` is the module-level :func:`_expression.join()` function, as well as the :meth:`_expression.FromClause.join` method of any :class:`_expression.FromClause` (e.g. such as :class:`_schema.Table`). .. seealso:: :func:`_expression.join` :meth:`_expression.FromClause.join` """ __visit_name__ = "join" _traverse_internals = [ ("left", InternalTraversal.dp_clauseelement), ("right", InternalTraversal.dp_clauseelement), ("onclause", InternalTraversal.dp_clauseelement), ("isouter", InternalTraversal.dp_boolean), ("full", InternalTraversal.dp_boolean), ] _is_join = True def __init__(self, left, right, onclause=None, isouter=False, full=False): """Construct a new :class:`_expression.Join`. The usual entrypoint here is the :func:`_expression.join` function or the :meth:`_expression.FromClause.join` method of any :class:`_expression.FromClause` object. """ self.left = coercions.expect( roles.FromClauseRole, left, deannotate=True ) self.right = coercions.expect( roles.FromClauseRole, right, deannotate=True ).self_group() if onclause is None: self.onclause = self._match_primaries(self.left, self.right) else: # note: taken from If91f61527236fd4d7ae3cad1f24c38be921c90ba # not merged yet self.onclause = coercions.expect( roles.OnClauseRole, onclause ).self_group(against=operators._asbool) self.isouter = isouter self.full = full @classmethod def _create_outerjoin(cls, left, right, onclause=None, full=False): """Return an ``OUTER JOIN`` clause element. The returned object is an instance of :class:`_expression.Join`. Similar functionality is also available via the :meth:`_expression.FromClause.outerjoin` method on any :class:`_expression.FromClause`. :param left: The left side of the join. :param right: The right side of the join. :param onclause: Optional criterion for the ``ON`` clause, is derived from foreign key relationships established between left and right otherwise. To chain joins together, use the :meth:`_expression.FromClause.join` or :meth:`_expression.FromClause.outerjoin` methods on the resulting :class:`_expression.Join` object. """ return cls(left, right, onclause, isouter=True, full=full) @classmethod def _create_join( cls, left, right, onclause=None, isouter=False, full=False ): """Produce a :class:`_expression.Join` object, given two :class:`_expression.FromClause` expressions. E.g.:: j = join(user_table, address_table, user_table.c.id == address_table.c.user_id) stmt = select(user_table).select_from(j) would emit SQL along the lines of:: SELECT user.id, user.name FROM user JOIN address ON user.id = address.user_id Similar functionality is available given any :class:`_expression.FromClause` object (e.g. such as a :class:`_schema.Table`) using the :meth:`_expression.FromClause.join` method. :param left: The left side of the join. :param right: the right side of the join; this is any :class:`_expression.FromClause` object such as a :class:`_schema.Table` object, and may also be a selectable-compatible object such as an ORM-mapped class. :param onclause: a SQL expression representing the ON clause of the join. If left at ``None``, :meth:`_expression.FromClause.join` will attempt to join the two tables based on a foreign key relationship. :param isouter: if True, render a LEFT OUTER JOIN, instead of JOIN. :param full: if True, render a FULL OUTER JOIN, instead of JOIN. .. versionadded:: 1.1 .. seealso:: :meth:`_expression.FromClause.join` - method form, based on a given left side. :class:`_expression.Join` - the type of object produced. """ return cls(left, right, onclause, isouter, full) @property def description(self): return "Join object on %s(%d) and %s(%d)" % ( self.left.description, id(self.left), self.right.description, id(self.right), ) def is_derived_from(self, fromclause): return ( # use hash() to ensure direct comparison to annotated works # as well hash(fromclause) == hash(self) or self.left.is_derived_from(fromclause) or self.right.is_derived_from(fromclause) ) def self_group(self, against=None): return FromGrouping(self) @util.preload_module("sqlalchemy.sql.util") def _populate_column_collection(self): sqlutil = util.preloaded.sql_util columns = [c for c in self.left.columns] + [ c for c in self.right.columns ] self.primary_key.extend( sqlutil.reduce_columns( (c for c in columns if c.primary_key), self.onclause ) ) self._columns._populate_separate_keys( (col._key_label, col) for col in columns ) self.foreign_keys.update( itertools.chain(*[col.foreign_keys for col in columns]) ) def _refresh_for_new_column(self, column): super(Join, self)._refresh_for_new_column(column) self.left._refresh_for_new_column(column) self.right._refresh_for_new_column(column) def _match_primaries(self, left, right): if isinstance(left, Join): left_right = left.right else: left_right = None return self._join_condition(left, right, a_subset=left_right) @classmethod def _join_condition( cls, a, b, a_subset=None, consider_as_foreign_keys=None ): """Create a join condition between two tables or selectables. e.g.:: join_condition(tablea, tableb) would produce an expression along the lines of:: tablea.c.id==tableb.c.tablea_id The join is determined based on the foreign key relationships between the two selectables. If there are multiple ways to join, or no way to join, an error is raised. :param a_subset: An optional expression that is a sub-component of ``a``. An attempt will be made to join to just this sub-component first before looking at the full ``a`` construct, and if found will be successful even if there are other ways to join to ``a``. This allows the "right side" of a join to be passed thereby providing a "natural join". """ constraints = cls._joincond_scan_left_right( a, a_subset, b, consider_as_foreign_keys ) if len(constraints) > 1: cls._joincond_trim_constraints( a, b, constraints, consider_as_foreign_keys ) if len(constraints) == 0: if isinstance(b, FromGrouping): hint = ( " Perhaps you meant to convert the right side to a " "subquery using alias()?" ) else: hint = "" raise exc.NoForeignKeysError( "Can't find any foreign key relationships " "between '%s' and '%s'.%s" % (a.description, b.description, hint) ) crit = [(x == y) for x, y in list(constraints.values())[0]] if len(crit) == 1: return crit[0] else: return and_(*crit) @classmethod def _can_join(cls, left, right, consider_as_foreign_keys=None): if isinstance(left, Join): left_right = left.right else: left_right = None constraints = cls._joincond_scan_left_right( a=left, b=right, a_subset=left_right, consider_as_foreign_keys=consider_as_foreign_keys, ) return bool(constraints) @classmethod @util.preload_module("sqlalchemy.sql.util") def _joincond_scan_left_right( cls, a, a_subset, b, consider_as_foreign_keys ): sql_util = util.preloaded.sql_util a = coercions.expect(roles.FromClauseRole, a) b = coercions.expect(roles.FromClauseRole, b) constraints = collections.defaultdict(list) for left in (a_subset, a): if left is None: continue for fk in sorted( b.foreign_keys, key=lambda fk: fk.parent._creation_order ): if ( consider_as_foreign_keys is not None and fk.parent not in consider_as_foreign_keys ): continue try: col = fk.get_referent(left) except exc.NoReferenceError as nrte: table_names = {t.name for t in sql_util.find_tables(left)} if nrte.table_name in table_names: raise else: continue if col is not None: constraints[fk.constraint].append((col, fk.parent)) if left is not b: for fk in sorted( left.foreign_keys, key=lambda fk: fk.parent._creation_order ): if ( consider_as_foreign_keys is not None and fk.parent not in consider_as_foreign_keys ): continue try: col = fk.get_referent(b) except exc.NoReferenceError as nrte: table_names = {t.name for t in sql_util.find_tables(b)} if nrte.table_name in table_names: raise else: continue if col is not None: constraints[fk.constraint].append((col, fk.parent)) if constraints: break return constraints @classmethod def _joincond_trim_constraints( cls, a, b, constraints, consider_as_foreign_keys ): # more than one constraint matched. narrow down the list # to include just those FKCs that match exactly to # "consider_as_foreign_keys". if consider_as_foreign_keys: for const in list(constraints): if set(f.parent for f in const.elements) != set( consider_as_foreign_keys ): del constraints[const] # if still multiple constraints, but # they all refer to the exact same end result, use it. if len(constraints) > 1: dedupe = set(tuple(crit) for crit in constraints.values()) if len(dedupe) == 1: key = list(constraints)[0] constraints = {key: constraints[key]} if len(constraints) != 1: raise exc.AmbiguousForeignKeysError( "Can't determine join between '%s' and '%s'; " "tables have more than one foreign key " "constraint relationship between them. " "Please specify the 'onclause' of this " "join explicitly." % (a.description, b.description) ) @util.deprecated_params( whereclause=( "2.0", "The :paramref:`_sql.Join.select().whereclause` parameter " "is deprecated and will be removed in version 2.0. " "Please make use of " "the :meth:`.Select.where` " "method to add WHERE criteria to the SELECT statement.", ), kwargs=( "2.0", "The :meth:`_sql.Join.select` method will no longer accept " "keyword arguments in version 2.0. Please use generative " "methods from the " ":class:`_sql.Select` construct in order to apply additional " "modifications.", ), ) def select(self, whereclause=None, **kwargs): r"""Create a :class:`_expression.Select` from this :class:`_expression.Join`. E.g.:: stmt = table_a.join(table_b, table_a.c.id == table_b.c.a_id) stmt = stmt.select() The above will produce a SQL string resembling:: SELECT table_a.id, table_a.col, table_b.id, table_b.a_id FROM table_a JOIN table_b ON table_a.id = table_b.a_id :param whereclause: WHERE criteria, same as calling :meth:`_sql.Select.where` on the resulting statement :param \**kwargs: additional keyword arguments are passed to the legacy constructor for :class:`_sql.Select` described at :meth:`_sql.Select.create_legacy_select`. """ collist = [self.left, self.right] if whereclause is not None: kwargs["whereclause"] = whereclause return Select._create_select_from_fromclause( self, collist, **kwargs ).select_from(self) @property @util.deprecated_20( ":attr:`.Executable.bind`", alternative="Bound metadata is being removed as of SQLAlchemy 2.0.", enable_warnings=False, ) def bind(self): """Return the bound engine associated with either the left or right side of this :class:`_sql.Join`. """ return self.left.bind or self.right.bind @util.preload_module("sqlalchemy.sql.util") def _anonymous_fromclause(self, name=None, flat=False): sqlutil = util.preloaded.sql_util if flat: if name is not None: raise exc.ArgumentError("Can't send name argument with flat") left_a, right_a = ( self.left._anonymous_fromclause(flat=True), self.right._anonymous_fromclause(flat=True), ) adapter = sqlutil.ClauseAdapter(left_a).chain( sqlutil.ClauseAdapter(right_a) ) return left_a.join( right_a, adapter.traverse(self.onclause), isouter=self.isouter, full=self.full, ) else: return ( self.select() .set_label_style(LABEL_STYLE_TABLENAME_PLUS_COL) .correlate(None) .alias(name) ) @util.deprecated_20( ":meth:`_sql.Join.alias`", alternative="Create a select + subquery, or alias the " "individual tables inside the join, instead.", ) def alias(self, name=None, flat=False): r"""Return an alias of this :class:`_expression.Join`. The default behavior here is to first produce a SELECT construct from this :class:`_expression.Join`, then to produce an :class:`_expression.Alias` from that. So given a join of the form:: j = table_a.join(table_b, table_a.c.id == table_b.c.a_id) The JOIN by itself would look like:: table_a JOIN table_b ON table_a.id = table_b.a_id Whereas the alias of the above, ``j.alias()``, would in a SELECT context look like:: (SELECT table_a.id AS table_a_id, table_b.id AS table_b_id, table_b.a_id AS table_b_a_id FROM table_a JOIN table_b ON table_a.id = table_b.a_id) AS anon_1 The equivalent long-hand form, given a :class:`_expression.Join` object ``j``, is:: from sqlalchemy import select, alias j = alias( select(j.left, j.right).\ select_from(j).\ set_label_style(LABEL_STYLE_TABLENAME_PLUS_COL).\ correlate(False), name=name ) The selectable produced by :meth:`_expression.Join.alias` features the same columns as that of the two individual selectables presented under a single name - the individual columns are "auto-labeled", meaning the ``.c.`` collection of the resulting :class:`_expression.Alias` represents the names of the individual columns using a ``_`` scheme:: j.c.table_a_id j.c.table_b_a_id :meth:`_expression.Join.alias` also features an alternate option for aliasing joins which produces no enclosing SELECT and does not normally apply labels to the column names. The ``flat=True`` option will call :meth:`_expression.FromClause.alias` against the left and right sides individually. Using this option, no new ``SELECT`` is produced; we instead, from a construct as below:: j = table_a.join(table_b, table_a.c.id == table_b.c.a_id) j = j.alias(flat=True) we get a result like this:: table_a AS table_a_1 JOIN table_b AS table_b_1 ON table_a_1.id = table_b_1.a_id The ``flat=True`` argument is also propagated to the contained selectables, so that a composite join such as:: j = table_a.join( table_b.join(table_c, table_b.c.id == table_c.c.b_id), table_b.c.a_id == table_a.c.id ).alias(flat=True) Will produce an expression like:: table_a AS table_a_1 JOIN ( table_b AS table_b_1 JOIN table_c AS table_c_1 ON table_b_1.id = table_c_1.b_id ) ON table_a_1.id = table_b_1.a_id The standalone :func:`_expression.alias` function as well as the base :meth:`_expression.FromClause.alias` method also support the ``flat=True`` argument as a no-op, so that the argument can be passed to the ``alias()`` method of any selectable. :param name: name given to the alias. :param flat: if True, produce an alias of the left and right sides of this :class:`_expression.Join` and return the join of those two selectables. This produces join expression that does not include an enclosing SELECT. .. seealso:: :ref:`core_tutorial_aliases` :func:`_expression.alias` """ return self._anonymous_fromclause(flat=flat, name=name) @property def _hide_froms(self): return itertools.chain( *[_from_objects(x.left, x.right) for x in self._cloned_set] ) @property def _from_objects(self): return [self] + self.left._from_objects + self.right._from_objects class NoInit(object): def __init__(self, *arg, **kw): raise NotImplementedError( "The %s class is not intended to be constructed " "directly. Please use the %s() standalone " "function or the %s() method available from appropriate " "selectable objects." % ( self.__class__.__name__, self.__class__.__name__.lower(), self.__class__.__name__.lower(), ) ) # FromClause -> # AliasedReturnsRows # -> Alias only for FromClause # -> Subquery only for SelectBase # -> CTE only for HasCTE -> SelectBase, DML # -> Lateral -> FromClause, but we accept SelectBase # w/ non-deprecated coercion # -> TableSample -> only for FromClause class AliasedReturnsRows(NoInit, FromClause): """Base class of aliases against tables, subqueries, and other selectables.""" _is_from_container = True named_with_column = True _supports_derived_columns = False _traverse_internals = [ ("element", InternalTraversal.dp_clauseelement), ("name", InternalTraversal.dp_anon_name), ] @classmethod def _construct(cls, *arg, **kw): obj = cls.__new__(cls) obj._init(*arg, **kw) return obj @classmethod def _factory(cls, returnsrows, name=None): """Base factory method. Subclasses need to provide this.""" raise NotImplementedError() def _init(self, selectable, name=None): self.element = coercions.expect( roles.ReturnsRowsRole, selectable, apply_propagate_attrs=self ) self.element = selectable self._orig_name = name if name is None: if ( isinstance(selectable, FromClause) and selectable.named_with_column ): name = getattr(selectable, "name", None) if isinstance(name, _anonymous_label): name = None name = _anonymous_label.safe_construct(id(self), name or "anon") self.name = name def _refresh_for_new_column(self, column): super(AliasedReturnsRows, self)._refresh_for_new_column(column) self.element._refresh_for_new_column(column) @property def description(self): name = self.name if isinstance(name, _anonymous_label): name = "anon_1" if util.py3k: return name else: return name.encode("ascii", "backslashreplace") @property def original(self): """Legacy for dialects that are referring to Alias.original.""" return self.element def is_derived_from(self, fromclause): if fromclause in self._cloned_set: return True return self.element.is_derived_from(fromclause) def _populate_column_collection(self): self.element._generate_fromclause_column_proxies(self) def _copy_internals(self, clone=_clone, **kw): existing_element = self.element super(AliasedReturnsRows, self)._copy_internals(clone=clone, **kw) # the element clone is usually against a Table that returns the # same object. don't reset exported .c. collections and other # memoized details if it was not changed. this saves a lot on # performance. if existing_element is not self.element: self._reset_column_collection() @property def _from_objects(self): return [self] @property def bind(self): return self.element.bind class Alias(roles.DMLTableRole, AliasedReturnsRows): """Represents an table or selectable alias (AS). Represents an alias, as typically applied to any table or sub-select within a SQL statement using the ``AS`` keyword (or without the keyword on certain databases such as Oracle). This object is constructed from the :func:`_expression.alias` module level function as well as the :meth:`_expression.FromClause.alias` method available on all :class:`_expression.FromClause` subclasses. .. seealso:: :meth:`_expression.FromClause.alias` """ __visit_name__ = "alias" inherit_cache = True @classmethod def _factory(cls, selectable, name=None, flat=False): """Return an :class:`_expression.Alias` object. An :class:`_expression.Alias` represents any :class:`_expression.FromClause` with an alternate name assigned within SQL, typically using the ``AS`` clause when generated, e.g. ``SELECT * FROM table AS aliasname``. Similar functionality is available via the :meth:`_expression.FromClause.alias` method available on all :class:`_expression.FromClause` subclasses. In terms of a SELECT object as generated from the :func:`_expression.select` function, the :meth:`_expression.SelectBase.alias` method returns an :class:`_expression.Alias` or similar object which represents a named, parenthesized subquery. When an :class:`_expression.Alias` is created from a :class:`_schema.Table` object, this has the effect of the table being rendered as ``tablename AS aliasname`` in a SELECT statement. For :func:`_expression.select` objects, the effect is that of creating a named subquery, i.e. ``(select ...) AS aliasname``. The ``name`` parameter is optional, and provides the name to use in the rendered SQL. If blank, an "anonymous" name will be deterministically generated at compile time. Deterministic means the name is guaranteed to be unique against other constructs used in the same statement, and will also be the same name for each successive compilation of the same statement object. :param selectable: any :class:`_expression.FromClause` subclass, such as a table, select statement, etc. :param name: string name to be assigned as the alias. If ``None``, a name will be deterministically generated at compile time. :param flat: Will be passed through to if the given selectable is an instance of :class:`_expression.Join` - see :meth:`_expression.Join.alias` for details. """ return coercions.expect( roles.FromClauseRole, selectable, allow_select=True ).alias(name=name, flat=flat) class TableValuedAlias(Alias): """An alias against a "table valued" SQL function. This construct provides for a SQL function that returns columns to be used in the FROM clause of a SELECT statement. The object is generated using the :meth:`_functions.FunctionElement.table_valued` method, e.g.:: >>> from sqlalchemy import select, func >>> fn = func.json_array_elements_text('["one", "two", "three"]').table_valued("value") >>> print(select(fn.c.value)) SELECT anon_1.value FROM json_array_elements_text(:json_array_elements_text_1) AS anon_1 .. versionadded:: 1.4.0b2 .. seealso:: :ref:`tutorial_functions_table_valued` - in the :ref:`unified_tutorial` """ # noqa E501 __visit_name__ = "table_valued_alias" _supports_derived_columns = True _render_derived = False _render_derived_w_types = False _traverse_internals = [ ("element", InternalTraversal.dp_clauseelement), ("name", InternalTraversal.dp_anon_name), ("_tableval_type", InternalTraversal.dp_type), ("_render_derived", InternalTraversal.dp_boolean), ("_render_derived_w_types", InternalTraversal.dp_boolean), ] def _init(self, selectable, name=None, table_value_type=None): super(TableValuedAlias, self)._init(selectable, name=name) self._tableval_type = ( type_api.TABLEVALUE if table_value_type is None else table_value_type ) @HasMemoized.memoized_attribute def column(self): """Return a column expression representing this :class:`_sql.TableValuedAlias`. This accessor is used to implement the :meth:`_functions.FunctionElement.column_valued` method. See that method for further details. E.g.:: >>> print(select(func.some_func().table_valued("value").column)) SELECT anon_1 FROM some_func() AS anon_1 .. seealso:: :meth:`_functions.FunctionElement.column_valued` """ return TableValuedColumn(self, self._tableval_type) def alias(self, name=None): """Return a new alias of this :class:`_sql.TableValuedAlias`. This creates a distinct FROM object that will be distinguished from the original one when used in a SQL statement. """ tva = TableValuedAlias._construct(self, name=name) if self._render_derived: tva._render_derived = True tva._render_derived_w_types = self._render_derived_w_types return tva def lateral(self, name=None): """Return a new :class:`_sql.TableValuedAlias` with the lateral flag set, so that it renders as LATERAL. .. seealso:: :func:`_expression.lateral` """ tva = self.alias(name=name) tva._is_lateral = True return tva def render_derived(self, name=None, with_types=False): """Apply "render derived" to this :class:`_sql.TableValuedAlias`. This has the effect of the individual column names listed out after the alias name in the "AS" sequence, e.g.:: >>> print( ... select( ... func.unnest(array(["one", "two", "three"])). table_valued("x", with_ordinality="o").render_derived() ... ) ... ) SELECT anon_1.x, anon_1.o FROM unnest(ARRAY[%(param_1)s, %(param_2)s, %(param_3)s]) WITH ORDINALITY AS anon_1(x, o) The ``with_types`` keyword will render column types inline within the alias expression (this syntax currently applies to the PostgreSQL database):: >>> print( ... select( ... func.json_to_recordset( ... '[{"a":1,"b":"foo"},{"a":"2","c":"bar"}]' ... ) ... .table_valued(column("a", Integer), column("b", String)) ... .render_derived(with_types=True) ... ) ... ) SELECT anon_1.a, anon_1.b FROM json_to_recordset(:json_to_recordset_1) AS anon_1(a INTEGER, b VARCHAR) :param name: optional string name that will be applied to the alias generated. If left as None, a unique anonymizing name will be used. :param with_types: if True, the derived columns will include the datatype specification with each column. This is a special syntax currently known to be required by PostgreSQL for some SQL functions. """ # noqa E501 # note: don't use the @_generative system here, keep a reference # to the original object. otherwise you can have re-use of the # python id() of the original which can cause name conflicts if # a new anon-name grabs the same identifier as the local anon-name # (just saw it happen on CI) new_alias = TableValuedAlias._construct(self, name=name) new_alias._render_derived = True new_alias._render_derived_w_types = with_types return new_alias class Lateral(AliasedReturnsRows): """Represent a LATERAL subquery. This object is constructed from the :func:`_expression.lateral` module level function as well as the :meth:`_expression.FromClause.lateral` method available on all :class:`_expression.FromClause` subclasses. While LATERAL is part of the SQL standard, currently only more recent PostgreSQL versions provide support for this keyword. .. versionadded:: 1.1 .. seealso:: :ref:`lateral_selects` - overview of usage. """ __visit_name__ = "lateral" _is_lateral = True inherit_cache = True @classmethod def _factory(cls, selectable, name=None): """Return a :class:`_expression.Lateral` object. :class:`_expression.Lateral` is an :class:`_expression.Alias` subclass that represents a subquery with the LATERAL keyword applied to it. The special behavior of a LATERAL subquery is that it appears in the FROM clause of an enclosing SELECT, but may correlate to other FROM clauses of that SELECT. It is a special case of subquery only supported by a small number of backends, currently more recent PostgreSQL versions. .. versionadded:: 1.1 .. seealso:: :ref:`lateral_selects` - overview of usage. """ return coercions.expect( roles.FromClauseRole, selectable, explicit_subquery=True ).lateral(name=name) class TableSample(AliasedReturnsRows): """Represent a TABLESAMPLE clause. This object is constructed from the :func:`_expression.tablesample` module level function as well as the :meth:`_expression.FromClause.tablesample` method available on all :class:`_expression.FromClause` subclasses. .. versionadded:: 1.1 .. seealso:: :func:`_expression.tablesample` """ __visit_name__ = "tablesample" _traverse_internals = AliasedReturnsRows._traverse_internals + [ ("sampling", InternalTraversal.dp_clauseelement), ("seed", InternalTraversal.dp_clauseelement), ] @classmethod def _factory(cls, selectable, sampling, name=None, seed=None): """Return a :class:`_expression.TableSample` object. :class:`_expression.TableSample` is an :class:`_expression.Alias` subclass that represents a table with the TABLESAMPLE clause applied to it. :func:`_expression.tablesample` is also available from the :class:`_expression.FromClause` class via the :meth:`_expression.FromClause.tablesample` method. The TABLESAMPLE clause allows selecting a randomly selected approximate percentage of rows from a table. It supports multiple sampling methods, most commonly BERNOULLI and SYSTEM. e.g.:: from sqlalchemy import func selectable = people.tablesample( func.bernoulli(1), name='alias', seed=func.random()) stmt = select(selectable.c.people_id) Assuming ``people`` with a column ``people_id``, the above statement would render as:: SELECT alias.people_id FROM people AS alias TABLESAMPLE bernoulli(:bernoulli_1) REPEATABLE (random()) .. versionadded:: 1.1 :param sampling: a ``float`` percentage between 0 and 100 or :class:`_functions.Function`. :param name: optional alias name :param seed: any real-valued SQL expression. When specified, the REPEATABLE sub-clause is also rendered. """ return coercions.expect(roles.FromClauseRole, selectable).tablesample( sampling, name=name, seed=seed ) def _init(self, selectable, sampling, name=None, seed=None): self.sampling = sampling self.seed = seed super(TableSample, self)._init(selectable, name=name) @util.preload_module("sqlalchemy.sql.functions") def _get_method(self): functions = util.preloaded.sql_functions if isinstance(self.sampling, functions.Function): return self.sampling else: return functions.func.system(self.sampling) class CTE( roles.DMLTableRole, Generative, HasPrefixes, HasSuffixes, AliasedReturnsRows, ): """Represent a Common Table Expression. The :class:`_expression.CTE` object is obtained using the :meth:`_sql.SelectBase.cte` method from any SELECT statement. A less often available syntax also allows use of the :meth:`_sql.HasCTE.cte` method present on :term:`DML` constructs such as :class:`_sql.Insert`, :class:`_sql.Update` and :class:`_sql.Delete`. See the :meth:`_sql.HasCTE.cte` method for usage details on CTEs. .. seealso:: :ref:`tutorial_subqueries_ctes` - in the 2.0 tutorial :meth:`_sql.HasCTE.cte` - examples of calling styles """ __visit_name__ = "cte" _traverse_internals = ( AliasedReturnsRows._traverse_internals + [ ("_cte_alias", InternalTraversal.dp_clauseelement), ("_restates", InternalTraversal.dp_clauseelement_list), ("recursive", InternalTraversal.dp_boolean), ] + HasPrefixes._has_prefixes_traverse_internals + HasSuffixes._has_suffixes_traverse_internals ) @classmethod def _factory(cls, selectable, name=None, recursive=False): r"""Return a new :class:`_expression.CTE`, or Common Table Expression instance. Please see :meth:`_expression.HasCTE.cte` for detail on CTE usage. """ return coercions.expect(roles.HasCTERole, selectable).cte( name=name, recursive=recursive ) def _init( self, selectable, name=None, recursive=False, _cte_alias=None, _restates=(), _prefixes=None, _suffixes=None, ): self.recursive = recursive self._cte_alias = _cte_alias self._restates = _restates if _prefixes: self._prefixes = _prefixes if _suffixes: self._suffixes = _suffixes super(CTE, self)._init(selectable, name=name) def _populate_column_collection(self): if self._cte_alias is not None: self._cte_alias._generate_fromclause_column_proxies(self) else: self.element._generate_fromclause_column_proxies(self) def alias(self, name=None, flat=False): """Return an :class:`_expression.Alias` of this :class:`_expression.CTE`. This method is a CTE-specific specialization of the :meth:`_expression.FromClause.alias` method. .. seealso:: :ref:`core_tutorial_aliases` :func:`_expression.alias` """ return CTE._construct( self.element, name=name, recursive=self.recursive, _cte_alias=self, _prefixes=self._prefixes, _suffixes=self._suffixes, ) def union(self, other): return CTE._construct( self.element.union(other), name=self.name, recursive=self.recursive, _restates=self._restates + (self,), _prefixes=self._prefixes, _suffixes=self._suffixes, ) def union_all(self, other): return CTE._construct( self.element.union_all(other), name=self.name, recursive=self.recursive, _restates=self._restates + (self,), _prefixes=self._prefixes, _suffixes=self._suffixes, ) class HasCTE(roles.HasCTERole): """Mixin that declares a class to include CTE support. .. versionadded:: 1.1 """ def cte(self, name=None, recursive=False): r"""Return a new :class:`_expression.CTE`, or Common Table Expression instance. Common table expressions are a SQL standard whereby SELECT statements can draw upon secondary statements specified along with the primary statement, using a clause called "WITH". Special semantics regarding UNION can also be employed to allow "recursive" queries, where a SELECT statement can draw upon the set of rows that have previously been selected. CTEs can also be applied to DML constructs UPDATE, INSERT and DELETE on some databases, both as a source of CTE rows when combined with RETURNING, as well as a consumer of CTE rows. .. versionchanged:: 1.1 Added support for UPDATE/INSERT/DELETE as CTE, CTEs added to UPDATE/INSERT/DELETE. SQLAlchemy detects :class:`_expression.CTE` objects, which are treated similarly to :class:`_expression.Alias` objects, as special elements to be delivered to the FROM clause of the statement as well as to a WITH clause at the top of the statement. For special prefixes such as PostgreSQL "MATERIALIZED" and "NOT MATERIALIZED", the :meth:`_expression.CTE.prefix_with` method may be used to establish these. .. versionchanged:: 1.3.13 Added support for prefixes. In particular - MATERIALIZED and NOT MATERIALIZED. :param name: name given to the common table expression. Like :meth:`_expression.FromClause.alias`, the name can be left as ``None`` in which case an anonymous symbol will be used at query compile time. :param recursive: if ``True``, will render ``WITH RECURSIVE``. A recursive common table expression is intended to be used in conjunction with UNION ALL in order to derive rows from those already selected. The following examples include two from PostgreSQL's documentation at http://www.postgresql.org/docs/current/static/queries-with.html, as well as additional examples. Example 1, non recursive:: from sqlalchemy import (Table, Column, String, Integer, MetaData, select, func) metadata = MetaData() orders = Table('orders', metadata, Column('region', String), Column('amount', Integer), Column('product', String), Column('quantity', Integer) ) regional_sales = select( orders.c.region, func.sum(orders.c.amount).label('total_sales') ).group_by(orders.c.region).cte("regional_sales") top_regions = select(regional_sales.c.region).\ where( regional_sales.c.total_sales > select( func.sum(regional_sales.c.total_sales) / 10 ) ).cte("top_regions") statement = select( orders.c.region, orders.c.product, func.sum(orders.c.quantity).label("product_units"), func.sum(orders.c.amount).label("product_sales") ).where(orders.c.region.in_( select(top_regions.c.region) )).group_by(orders.c.region, orders.c.product) result = conn.execute(statement).fetchall() Example 2, WITH RECURSIVE:: from sqlalchemy import (Table, Column, String, Integer, MetaData, select, func) metadata = MetaData() parts = Table('parts', metadata, Column('part', String), Column('sub_part', String), Column('quantity', Integer), ) included_parts = select(\ parts.c.sub_part, parts.c.part, parts.c.quantity\ ).\ where(parts.c.part=='our part').\ cte(recursive=True) incl_alias = included_parts.alias() parts_alias = parts.alias() included_parts = included_parts.union_all( select( parts_alias.c.sub_part, parts_alias.c.part, parts_alias.c.quantity ).\ where(parts_alias.c.part==incl_alias.c.sub_part) ) statement = select( included_parts.c.sub_part, func.sum(included_parts.c.quantity). label('total_quantity') ).\ group_by(included_parts.c.sub_part) result = conn.execute(statement).fetchall() Example 3, an upsert using UPDATE and INSERT with CTEs:: from datetime import date from sqlalchemy import (MetaData, Table, Column, Integer, Date, select, literal, and_, exists) metadata = MetaData() visitors = Table('visitors', metadata, Column('product_id', Integer, primary_key=True), Column('date', Date, primary_key=True), Column('count', Integer), ) # add 5 visitors for the product_id == 1 product_id = 1 day = date.today() count = 5 update_cte = ( visitors.update() .where(and_(visitors.c.product_id == product_id, visitors.c.date == day)) .values(count=visitors.c.count + count) .returning(literal(1)) .cte('update_cte') ) upsert = visitors.insert().from_select( [visitors.c.product_id, visitors.c.date, visitors.c.count], select(literal(product_id), literal(day), literal(count)) .where(~exists(update_cte.select())) ) connection.execute(upsert) .. seealso:: :meth:`_orm.Query.cte` - ORM version of :meth:`_expression.HasCTE.cte`. """ return CTE._construct(self, name=name, recursive=recursive) class Subquery(AliasedReturnsRows): """Represent a subquery of a SELECT. A :class:`.Subquery` is created by invoking the :meth:`_expression.SelectBase.subquery` method, or for convenience the :meth:`_expression.SelectBase.alias` method, on any :class:`_expression.SelectBase` subclass which includes :class:`_expression.Select`, :class:`_expression.CompoundSelect`, and :class:`_expression.TextualSelect`. As rendered in a FROM clause, it represents the body of the SELECT statement inside of parenthesis, followed by the usual "AS " that defines all "alias" objects. The :class:`.Subquery` object is very similar to the :class:`_expression.Alias` object and can be used in an equivalent way. The difference between :class:`_expression.Alias` and :class:`.Subquery` is that :class:`_expression.Alias` always contains a :class:`_expression.FromClause` object whereas :class:`.Subquery` always contains a :class:`_expression.SelectBase` object. .. versionadded:: 1.4 The :class:`.Subquery` class was added which now serves the purpose of providing an aliased version of a SELECT statement. """ __visit_name__ = "subquery" _is_subquery = True inherit_cache = True @classmethod def _factory(cls, selectable, name=None): """Return a :class:`.Subquery` object.""" return coercions.expect( roles.SelectStatementRole, selectable ).subquery(name=name) @util.deprecated( "1.4", "The :meth:`.Subquery.as_scalar` method, which was previously " "``Alias.as_scalar()`` prior to version 1.4, is deprecated and " "will be removed in a future release; Please use the " ":meth:`_expression.Select.scalar_subquery` method of the " ":func:`_expression.select` " "construct before constructing a subquery object, or with the ORM " "use the :meth:`_query.Query.scalar_subquery` method.", ) def as_scalar(self): return self.element.set_label_style(LABEL_STYLE_NONE).scalar_subquery() def _execute_on_connection( self, connection, multiparams, params, execution_options, ): util.warn_deprecated( "Executing a subquery object is deprecated and will raise " "ObjectNotExecutableError in an upcoming release. Please " "execute the underlying select() statement directly.", "1.4", ) return self.element._execute_on_connection( connection, multiparams, params, execution_options, _force=True ) class FromGrouping(GroupedElement, FromClause): """Represent a grouping of a FROM clause""" _traverse_internals = [("element", InternalTraversal.dp_clauseelement)] def __init__(self, element): self.element = coercions.expect(roles.FromClauseRole, element) def _init_collections(self): pass @property def columns(self): return self.element.columns @property def primary_key(self): return self.element.primary_key @property def foreign_keys(self): return self.element.foreign_keys def is_derived_from(self, element): return self.element.is_derived_from(element) def alias(self, **kw): return FromGrouping(self.element.alias(**kw)) def _anonymous_fromclause(self, **kw): return FromGrouping(self.element._anonymous_fromclause(**kw)) @property def _hide_froms(self): return self.element._hide_froms @property def _from_objects(self): return self.element._from_objects def __getstate__(self): return {"element": self.element} def __setstate__(self, state): self.element = state["element"] class TableClause(roles.DMLTableRole, Immutable, FromClause): """Represents a minimal "table" construct. This is a lightweight table object that has only a name, a collection of columns, which are typically produced by the :func:`_expression.column` function, and a schema:: from sqlalchemy import table, column user = table("user", column("id"), column("name"), column("description"), ) The :class:`_expression.TableClause` construct serves as the base for the more commonly used :class:`_schema.Table` object, providing the usual set of :class:`_expression.FromClause` services including the ``.c.`` collection and statement generation methods. It does **not** provide all the additional schema-level services of :class:`_schema.Table`, including constraints, references to other tables, or support for :class:`_schema.MetaData`-level services. It's useful on its own as an ad-hoc construct used to generate quick SQL statements when a more fully fledged :class:`_schema.Table` is not on hand. """ __visit_name__ = "table" _traverse_internals = [ ( "columns", InternalTraversal.dp_fromclause_canonical_column_collection, ), ("name", InternalTraversal.dp_string), ] named_with_column = True implicit_returning = False """:class:`_expression.TableClause` doesn't support having a primary key or column -level defaults, so implicit returning doesn't apply.""" _autoincrement_column = None """No PK or default support so no autoincrement column.""" def __init__(self, name, *columns, **kw): """Produce a new :class:`_expression.TableClause`. The object returned is an instance of :class:`_expression.TableClause`, which represents the "syntactical" portion of the schema-level :class:`_schema.Table` object. It may be used to construct lightweight table constructs. .. versionchanged:: 1.0.0 :func:`_expression.table` can now be imported from the plain ``sqlalchemy`` namespace like any other SQL element. :param name: Name of the table. :param columns: A collection of :func:`_expression.column` constructs. :param schema: The schema name for this table. .. versionadded:: 1.3.18 :func:`_expression.table` can now accept a ``schema`` argument. """ super(TableClause, self).__init__() self.name = self.fullname = name self._columns = DedupeColumnCollection() self.primary_key = ColumnSet() self.foreign_keys = set() for c in columns: self.append_column(c) schema = kw.pop("schema", None) if schema is not None: self.schema = schema if kw: raise exc.ArgumentError("Unsupported argument(s): %s" % list(kw)) def __str__(self): if self.schema is not None: return self.schema + "." + self.name else: return self.name def _refresh_for_new_column(self, column): pass def _init_collections(self): pass @util.memoized_property def description(self): if util.py3k: return self.name else: return self.name.encode("ascii", "backslashreplace") def append_column(self, c, **kw): existing = c.table if existing is not None and existing is not self: raise exc.ArgumentError( "column object '%s' already assigned to table '%s'" % (c.key, existing) ) self._columns.add(c) c.table = self @util.preload_module("sqlalchemy.sql.dml") def insert(self, values=None, inline=False, **kwargs): """Generate an :func:`_expression.insert` construct against this :class:`_expression.TableClause`. E.g.:: table.insert().values(name='foo') See :func:`_expression.insert` for argument and usage information. """ return util.preloaded.sql_dml.Insert( self, values=values, inline=inline, **kwargs ) @util.preload_module("sqlalchemy.sql.dml") def update(self, whereclause=None, values=None, inline=False, **kwargs): """Generate an :func:`_expression.update` construct against this :class:`_expression.TableClause`. E.g.:: table.update().where(table.c.id==7).values(name='foo') See :func:`_expression.update` for argument and usage information. """ return util.preloaded.sql_dml.Update( self, whereclause=whereclause, values=values, inline=inline, **kwargs ) @util.preload_module("sqlalchemy.sql.dml") def delete(self, whereclause=None, **kwargs): """Generate a :func:`_expression.delete` construct against this :class:`_expression.TableClause`. E.g.:: table.delete().where(table.c.id==7) See :func:`_expression.delete` for argument and usage information. """ return util.preloaded.sql_dml.Delete(self, whereclause, **kwargs) @property def _from_objects(self): return [self] class ForUpdateArg(ClauseElement): _traverse_internals = [ ("of", InternalTraversal.dp_clauseelement_list), ("nowait", InternalTraversal.dp_boolean), ("read", InternalTraversal.dp_boolean), ("skip_locked", InternalTraversal.dp_boolean), ] @classmethod def _from_argument(cls, with_for_update): if isinstance(with_for_update, ForUpdateArg): return with_for_update elif with_for_update in (None, False): return None elif with_for_update is True: return ForUpdateArg() else: return ForUpdateArg(**with_for_update) def __eq__(self, other): return ( isinstance(other, ForUpdateArg) and other.nowait == self.nowait and other.read == self.read and other.skip_locked == self.skip_locked and other.key_share == self.key_share and other.of is self.of ) def __ne__(self, other): return not self.__eq__(other) def __hash__(self): return id(self) def __init__( self, nowait=False, read=False, of=None, skip_locked=False, key_share=False, ): """Represents arguments specified to :meth:`_expression.Select.for_update`. """ self.nowait = nowait self.read = read self.skip_locked = skip_locked self.key_share = key_share if of is not None: self.of = [ coercions.expect(roles.ColumnsClauseRole, elem) for elem in util.to_list(of) ] else: self.of = None class Values(Generative, FromClause): """Represent a ``VALUES`` construct that can be used as a FROM element in a statement. The :class:`_expression.Values` object is created from the :func:`_expression.values` function. .. versionadded:: 1.4 """ named_with_column = True __visit_name__ = "values" _data = () _traverse_internals = [ ("_column_args", InternalTraversal.dp_clauseelement_list), ("_data", InternalTraversal.dp_dml_multi_values), ("name", InternalTraversal.dp_string), ("literal_binds", InternalTraversal.dp_boolean), ] def __init__(self, *columns, **kw): r"""Construct a :class:`_expression.Values` construct. The column expressions and the actual data for :class:`_expression.Values` are given in two separate steps. The constructor receives the column expressions typically as :func:`_expression.column` constructs, and the data is then passed via the :meth:`_expression.Values.data` method as a list, which can be called multiple times to add more data, e.g.:: from sqlalchemy import column from sqlalchemy import values value_expr = values( column('id', Integer), column('name', String), name="my_values" ).data( [(1, 'name1'), (2, 'name2'), (3, 'name3')] ) :param \*columns: column expressions, typically composed using :func:`_expression.column` objects. :param name: the name for this VALUES construct. If omitted, the VALUES construct will be unnamed in a SQL expression. Different backends may have different requirements here. :param literal_binds: Defaults to False. Whether or not to render the data values inline in the SQL output, rather than using bound parameters. """ super(Values, self).__init__() self._column_args = columns self.name = kw.pop("name", None) self.literal_binds = kw.pop("literal_binds", False) self.named_with_column = self.name is not None @property def _column_types(self): return [col.type for col in self._column_args] @_generative def alias(self, name, **kw): """Return a new :class:`_expression.Values` construct that is a copy of this one with the given name. This method is a VALUES-specific specialization of the :meth:`_expression.FromClause.alias` method. .. seealso:: :ref:`core_tutorial_aliases` :func:`_expression.alias` """ self.name = name self.named_with_column = self.name is not None @_generative def lateral(self, name=None): """Return a new :class:`_expression.Values` with the lateral flag set, so that it renders as LATERAL. .. seealso:: :func:`_expression.lateral` """ self._is_lateral = True if name is not None: self.name = name @_generative def data(self, values): """Return a new :class:`_expression.Values` construct, adding the given data to the data list. E.g.:: my_values = my_values.data([(1, 'value 1'), (2, 'value2')]) :param values: a sequence (i.e. list) of tuples that map to the column expressions given in the :class:`_expression.Values` constructor. """ self._data += (values,) def _populate_column_collection(self): for c in self._column_args: self._columns.add(c) c.table = self @property def _from_objects(self): return [self] class SelectBase( roles.SelectStatementRole, roles.DMLSelectRole, roles.CompoundElementRole, roles.InElementRole, HasCTE, Executable, SupportsCloneAnnotations, Selectable, ): """Base class for SELECT statements. This includes :class:`_expression.Select`, :class:`_expression.CompoundSelect` and :class:`_expression.TextualSelect`. """ _is_select_statement = True is_select = True def _generate_fromclause_column_proxies(self, fromclause): raise NotImplementedError() def _refresh_for_new_column(self, column): self._reset_memoizations() @property def selected_columns(self): """A :class:`_expression.ColumnCollection` representing the columns that this SELECT statement or similar construct returns in its result set. This collection differs from the :attr:`_expression.FromClause.columns` collection of a :class:`_expression.FromClause` in that the columns within this collection cannot be directly nested inside another SELECT statement; a subquery must be applied first which provides for the necessary parenthesization required by SQL. .. note:: The :attr:`_sql.SelectBase.selected_columns` collection does not include expressions established in the columns clause using the :func:`_sql.text` construct; these are silently omitted from the collection. To use plain textual column expressions inside of a :class:`_sql.Select` construct, use the :func:`_sql.literal_column` construct. .. seealso:: :attr:`_sql.Select.selected_columns` .. versionadded:: 1.4 """ raise NotImplementedError() @property def _all_selected_columns(self): """A sequence of expressions that correspond to what is rendered in the columns clause, including :class:`_sql.TextClause` constructs. .. versionadded:: 1.4.12 .. seealso:: :attr:`_sql.SelectBase.exported_columns` """ raise NotImplementedError() @property def exported_columns(self): """A :class:`_expression.ColumnCollection` that represents the "exported" columns of this :class:`_expression.Selectable`, not including :class:`_sql.TextClause` constructs. The "exported" columns for a :class:`_expression.SelectBase` object are synonymous with the :attr:`_expression.SelectBase.selected_columns` collection. .. versionadded:: 1.4 .. seealso:: :attr:`_expression.Select.exported_columns` :attr:`_expression.Selectable.exported_columns` :attr:`_expression.FromClause.exported_columns` """ return self.selected_columns @property @util.deprecated( "1.4", "The :attr:`_expression.SelectBase.c` and " ":attr:`_expression.SelectBase.columns` attributes " "are deprecated and will be removed in a future release; these " "attributes implicitly create a subquery that should be explicit. " "Please call :meth:`_expression.SelectBase.subquery` " "first in order to create " "a subquery, which then contains this attribute. To access the " "columns that this SELECT object SELECTs " "from, use the :attr:`_expression.SelectBase.selected_columns` " "attribute.", ) def c(self): return self._implicit_subquery.columns @property def columns(self): return self.c @util.deprecated( "1.4", "The :meth:`_expression.SelectBase.select` method is deprecated " "and will be removed in a future release; this method implicitly " "creates a subquery that should be explicit. " "Please call :meth:`_expression.SelectBase.subquery` " "first in order to create " "a subquery, which then can be selected.", ) def select(self, *arg, **kw): return self._implicit_subquery.select(*arg, **kw) @HasMemoized.memoized_attribute def _implicit_subquery(self): return self.subquery() @util.deprecated( "1.4", "The :meth:`_expression.SelectBase.as_scalar` " "method is deprecated and will be " "removed in a future release. Please refer to " ":meth:`_expression.SelectBase.scalar_subquery`.", ) def as_scalar(self): return self.scalar_subquery() def exists(self): """Return an :class:`_sql.Exists` representation of this selectable, which can be used as a column expression. The returned object is an instance of :class:`_sql.Exists`. .. seealso:: :func:`_sql.exists` :ref:`tutorial_exists` - in the :term:`2.0 style` tutorial. .. versionadded:: 1.4 """ return Exists(self) def scalar_subquery(self): """Return a 'scalar' representation of this selectable, which can be used as a column expression. The returned object is an instance of :class:`_sql.ScalarSelect`. Typically, a select statement which has only one column in its columns clause is eligible to be used as a scalar expression. The scalar subquery can then be used in the WHERE clause or columns clause of an enclosing SELECT. Note that the scalar subquery differentiates from the FROM-level subquery that can be produced using the :meth:`_expression.SelectBase.subquery` method. .. versionchanged: 1.4 - the ``.as_scalar()`` method was renamed to :meth:`_expression.SelectBase.scalar_subquery`. .. seealso:: :ref:`tutorial_scalar_subquery` - in the 2.0 tutorial :ref:`scalar_selects` - in the 1.x tutorial """ if self._label_style is not LABEL_STYLE_NONE: self = self.set_label_style(LABEL_STYLE_NONE) return ScalarSelect(self) def label(self, name): """Return a 'scalar' representation of this selectable, embedded as a subquery with a label. .. seealso:: :meth:`_expression.SelectBase.as_scalar`. """ return self.scalar_subquery().label(name) def lateral(self, name=None): """Return a LATERAL alias of this :class:`_expression.Selectable`. The return value is the :class:`_expression.Lateral` construct also provided by the top-level :func:`_expression.lateral` function. .. versionadded:: 1.1 .. seealso:: :ref:`lateral_selects` - overview of usage. """ return Lateral._factory(self, name) @property def _from_objects(self): return [self] def subquery(self, name=None): """Return a subquery of this :class:`_expression.SelectBase`. A subquery is from a SQL perspective a parenthesized, named construct that can be placed in the FROM clause of another SELECT statement. Given a SELECT statement such as:: stmt = select(table.c.id, table.c.name) The above statement might look like:: SELECT table.id, table.name FROM table The subquery form by itself renders the same way, however when embedded into the FROM clause of another SELECT statement, it becomes a named sub-element:: subq = stmt.subquery() new_stmt = select(subq) The above renders as:: SELECT anon_1.id, anon_1.name FROM (SELECT table.id, table.name FROM table) AS anon_1 Historically, :meth:`_expression.SelectBase.subquery` is equivalent to calling the :meth:`_expression.FromClause.alias` method on a FROM object; however, as a :class:`_expression.SelectBase` object is not directly FROM object, the :meth:`_expression.SelectBase.subquery` method provides clearer semantics. .. versionadded:: 1.4 """ return Subquery._construct(self._ensure_disambiguated_names(), name) def _ensure_disambiguated_names(self): """Ensure that the names generated by this selectbase will be disambiguated in some way, if possible. """ raise NotImplementedError() def alias(self, name=None, flat=False): """Return a named subquery against this :class:`_expression.SelectBase`. For a :class:`_expression.SelectBase` (as opposed to a :class:`_expression.FromClause`), this returns a :class:`.Subquery` object which behaves mostly the same as the :class:`_expression.Alias` object that is used with a :class:`_expression.FromClause`. .. versionchanged:: 1.4 The :meth:`_expression.SelectBase.alias` method is now a synonym for the :meth:`_expression.SelectBase.subquery` method. """ return self.subquery(name=name) class SelectStatementGrouping(GroupedElement, SelectBase): """Represent a grouping of a :class:`_expression.SelectBase`. This differs from :class:`.Subquery` in that we are still an "inner" SELECT statement, this is strictly for grouping inside of compound selects. """ __visit_name__ = "grouping" _traverse_internals = [("element", InternalTraversal.dp_clauseelement)] _is_select_container = True def __init__(self, element): self.element = coercions.expect(roles.SelectStatementRole, element) def _ensure_disambiguated_names(self): new_element = self.element._ensure_disambiguated_names() if new_element is not self.element: return SelectStatementGrouping(new_element) else: return self def get_label_style(self): return self._label_style def set_label_style(self, label_style): return SelectStatementGrouping( self.element.set_label_style(label_style) ) @property def _label_style(self): return self.element._label_style @property def select_statement(self): return self.element def self_group(self, against=None): return self def _generate_fromclause_column_proxies(self, subquery): self.element._generate_fromclause_column_proxies(subquery) def _generate_proxy_for_new_column(self, column, subquery): return self.element._generate_proxy_for_new_column(subquery) @property def _all_selected_columns(self): return self.element._all_selected_columns @property def selected_columns(self): """A :class:`_expression.ColumnCollection` representing the columns that the embedded SELECT statement returns in its result set, not including :class:`_sql.TextClause` constructs. .. versionadded:: 1.4 .. seealso:: :attr:`_sql.Select.selected_columns` """ return self.element.selected_columns @property def _from_objects(self): return self.element._from_objects class DeprecatedSelectBaseGenerations(object): """A collection of methods available on :class:`_sql.Select` and :class:`_sql.CompoundSelect`, these are all **deprecated** methods as they modify the object in-place. """ @util.deprecated( "1.4", "The :meth:`_expression.GenerativeSelect.append_order_by` " "method is deprecated " "and will be removed in a future release. Use the generative method " ":meth:`_expression.GenerativeSelect.order_by`.", ) def append_order_by(self, *clauses): """Append the given ORDER BY criterion applied to this selectable. The criterion will be appended to any pre-existing ORDER BY criterion. This is an **in-place** mutation method; the :meth:`_expression.GenerativeSelect.order_by` method is preferred, as it provides standard :term:`method chaining`. .. seealso:: :meth:`_expression.GenerativeSelect.order_by` """ self.order_by.non_generative(self, *clauses) @util.deprecated( "1.4", "The :meth:`_expression.GenerativeSelect.append_group_by` " "method is deprecated " "and will be removed in a future release. Use the generative method " ":meth:`_expression.GenerativeSelect.group_by`.", ) def append_group_by(self, *clauses): """Append the given GROUP BY criterion applied to this selectable. The criterion will be appended to any pre-existing GROUP BY criterion. This is an **in-place** mutation method; the :meth:`_expression.GenerativeSelect.group_by` method is preferred, as it provides standard :term:`method chaining`. """ self.group_by.non_generative(self, *clauses) class GenerativeSelect(DeprecatedSelectBaseGenerations, SelectBase): """Base class for SELECT statements where additional elements can be added. This serves as the base for :class:`_expression.Select` and :class:`_expression.CompoundSelect` where elements such as ORDER BY, GROUP BY can be added and column rendering can be controlled. Compare to :class:`_expression.TextualSelect`, which, while it subclasses :class:`_expression.SelectBase` and is also a SELECT construct, represents a fixed textual string which cannot be altered at this level, only wrapped as a subquery. """ _order_by_clauses = () _group_by_clauses = () _limit_clause = None _offset_clause = None _fetch_clause = None _fetch_clause_options = None _for_update_arg = None @util.deprecated_params( bind=( "2.0", "The :paramref:`_sql.select.bind` argument is deprecated and " "will be removed in SQLAlchemy 2.0.", ), ) def __init__( self, _label_style=LABEL_STYLE_DEFAULT, use_labels=False, limit=None, offset=None, order_by=None, group_by=None, bind=None, ): if use_labels: if util.SQLALCHEMY_WARN_20: util.warn_deprecated_20( "The use_labels=True keyword argument to GenerativeSelect " "is deprecated and will be removed in version 2.0. Please " "use " "select.set_label_style(LABEL_STYLE_TABLENAME_PLUS_COL) " "if you need to replicate this legacy behavior.", stacklevel=4, ) _label_style = LABEL_STYLE_TABLENAME_PLUS_COL self._label_style = _label_style if limit is not None: self.limit.non_generative(self, limit) if offset is not None: self.offset.non_generative(self, offset) if order_by is not None: self.order_by.non_generative(self, *util.to_list(order_by)) if group_by is not None: self.group_by.non_generative(self, *util.to_list(group_by)) self._bind = bind @_generative def with_for_update( self, nowait=False, read=False, of=None, skip_locked=False, key_share=False, ): """Specify a ``FOR UPDATE`` clause for this :class:`_expression.GenerativeSelect`. E.g.:: stmt = select(table).with_for_update(nowait=True) On a database like PostgreSQL or Oracle, the above would render a statement like:: SELECT table.a, table.b FROM table FOR UPDATE NOWAIT on other backends, the ``nowait`` option is ignored and instead would produce:: SELECT table.a, table.b FROM table FOR UPDATE When called with no arguments, the statement will render with the suffix ``FOR UPDATE``. Additional arguments can then be provided which allow for common database-specific variants. :param nowait: boolean; will render ``FOR UPDATE NOWAIT`` on Oracle and PostgreSQL dialects. :param read: boolean; will render ``LOCK IN SHARE MODE`` on MySQL, ``FOR SHARE`` on PostgreSQL. On PostgreSQL, when combined with ``nowait``, will render ``FOR SHARE NOWAIT``. :param of: SQL expression or list of SQL expression elements (typically :class:`_schema.Column` objects or a compatible expression) which will render into a ``FOR UPDATE OF`` clause; supported by PostgreSQL and Oracle. May render as a table or as a column depending on backend. :param skip_locked: boolean, will render ``FOR UPDATE SKIP LOCKED`` on Oracle and PostgreSQL dialects or ``FOR SHARE SKIP LOCKED`` if ``read=True`` is also specified. :param key_share: boolean, will render ``FOR NO KEY UPDATE``, or if combined with ``read=True`` will render ``FOR KEY SHARE``, on the PostgreSQL dialect. """ self._for_update_arg = ForUpdateArg( nowait=nowait, read=read, of=of, skip_locked=skip_locked, key_share=key_share, ) def get_label_style(self): """ Retrieve the current label style. .. versionadded:: 1.4 """ return self._label_style def set_label_style(self, style): """Return a new selectable with the specified label style. There are three "label styles" available, :data:`_sql.LABEL_STYLE_DISAMBIGUATE_ONLY`, :data:`_sql.LABEL_STYLE_TABLENAME_PLUS_COL`, and :data:`_sql.LABEL_STYLE_NONE`. The default style is :data:`_sql.LABEL_STYLE_TABLENAME_PLUS_COL`. In modern SQLAlchemy, there is not generally a need to change the labeling style, as per-expression labels are more effectively used by making use of the :meth:`_sql.ColumnElement.label` method. In past versions, :data:`_sql.LABEL_STYLE_TABLENAME_PLUS_COL` was used to disambiguate same-named columns from different tables, aliases, or subqueries; the newer :data:`_sql.LABEL_STYLE_DISAMBIGUATE_ONLY` now applies labels only to names that conflict with an existing name so that the impact of this labeling is minimal. The rationale for disambiguation is mostly so that all column expressions are available from a given :attr:`_sql.FromClause.c` collection when a subquery is created. .. versionadded:: 1.4 - the :meth:`_sql.GenerativeSelect.set_label_style` method replaces the previous combination of ``.apply_labels()``, ``.with_labels()`` and ``use_labels=True`` methods and/or parameters. .. seealso:: :data:`_sql.LABEL_STYLE_DISAMBIGUATE_ONLY` :data:`_sql.LABEL_STYLE_TABLENAME_PLUS_COL` :data:`_sql.LABEL_STYLE_NONE` :data:`_sql.LABEL_STYLE_DEFAULT` """ if self._label_style is not style: self = self._generate() self._label_style = style return self @util.deprecated_20( ":meth:`_sql.GenerativeSelect.apply_labels`", alternative="Use set_label_style(LABEL_STYLE_TABLENAME_PLUS_COL) " "instead.", ) def apply_labels(self): return self.set_label_style(LABEL_STYLE_TABLENAME_PLUS_COL) @property def _group_by_clause(self): """ClauseList access to group_by_clauses for legacy dialects""" return ClauseList._construct_raw( operators.comma_op, self._group_by_clauses ) @property def _order_by_clause(self): """ClauseList access to order_by_clauses for legacy dialects""" return ClauseList._construct_raw( operators.comma_op, self._order_by_clauses ) def _offset_or_limit_clause(self, element, name=None, type_=None): """Convert the given value to an "offset or limit" clause. This handles incoming integers and converts to an expression; if an expression is already given, it is passed through. """ return coercions.expect( roles.LimitOffsetRole, element, name=name, type_=type_ ) def _offset_or_limit_clause_asint(self, clause, attrname): """Convert the "offset or limit" clause of a select construct to an integer. This is only possible if the value is stored as a simple bound parameter. Otherwise, a compilation error is raised. """ if clause is None: return None try: value = clause._limit_offset_value except AttributeError as err: util.raise_( exc.CompileError( "This SELECT structure does not use a simple " "integer value for %s" % attrname ), replace_context=err, ) else: return util.asint(value) @property def _limit(self): """Get an integer value for the limit. This should only be used by code that cannot support a limit as a BindParameter or other custom clause as it will throw an exception if the limit isn't currently set to an integer. """ return self._offset_or_limit_clause_asint(self._limit_clause, "limit") def _simple_int_clause(self, clause): """True if the clause is a simple integer, False if it is not present or is a SQL expression. """ return isinstance(clause, _OffsetLimitParam) @property def _offset(self): """Get an integer value for the offset. This should only be used by code that cannot support an offset as a BindParameter or other custom clause as it will throw an exception if the offset isn't currently set to an integer. """ return self._offset_or_limit_clause_asint( self._offset_clause, "offset" ) @property def _has_row_limiting_clause(self): return ( self._limit_clause is not None or self._offset_clause is not None or self._fetch_clause is not None ) @_generative def limit(self, limit): """Return a new selectable with the given LIMIT criterion applied. This is a numerical value which usually renders as a ``LIMIT`` expression in the resulting select. Backends that don't support ``LIMIT`` will attempt to provide similar functionality. .. note:: The :meth:`_sql.GenerativeSelect.limit` method will replace any clause applied with :meth:`_sql.GenerativeSelect.fetch`. .. versionchanged:: 1.0.0 - :meth:`_expression.Select.limit` can now accept arbitrary SQL expressions as well as integer values. :param limit: an integer LIMIT parameter, or a SQL expression that provides an integer result. Pass ``None`` to reset it. .. seealso:: :meth:`_sql.GenerativeSelect.fetch` :meth:`_sql.GenerativeSelect.offset` """ self._fetch_clause = self._fetch_clause_options = None self._limit_clause = self._offset_or_limit_clause(limit) @_generative def fetch(self, count, with_ties=False, percent=False): """Return a new selectable with the given FETCH FIRST criterion applied. This is a numeric value which usually renders as ``FETCH {FIRST | NEXT} [ count ] {ROW | ROWS} {ONLY | WITH TIES}`` expression in the resulting select. This functionality is is currently implemented for Oracle, PostgreSQL, MSSQL. Use :meth:`_sql.GenerativeSelect.offset` to specify the offset. .. note:: The :meth:`_sql.GenerativeSelect.fetch` method will replace any clause applied with :meth:`_sql.GenerativeSelect.limit`. .. versionadded:: 1.4 :param count: an integer COUNT parameter, or a SQL expression that provides an integer result. When ``percent=True`` this will represent the percentage of rows to return, not the absolute value. Pass ``None`` to reset it. :param with_ties: When ``True``, the WITH TIES option is used to return any additional rows that tie for the last place in the result set according to the ``ORDER BY`` clause. The ``ORDER BY`` may be mandatory in this case. Defaults to ``False`` :param percent: When ``True``, ``count`` represents the percentage of the total number of selected rows to return. Defaults to ``False`` .. seealso:: :meth:`_sql.GenerativeSelect.limit` :meth:`_sql.GenerativeSelect.offset` """ self._limit_clause = None if count is None: self._fetch_clause = self._fetch_clause_options = None else: self._fetch_clause = self._offset_or_limit_clause(count) self._fetch_clause_options = { "with_ties": with_ties, "percent": percent, } @_generative def offset(self, offset): """Return a new selectable with the given OFFSET criterion applied. This is a numeric value which usually renders as an ``OFFSET`` expression in the resulting select. Backends that don't support ``OFFSET`` will attempt to provide similar functionality. .. versionchanged:: 1.0.0 - :meth:`_expression.Select.offset` can now accept arbitrary SQL expressions as well as integer values. :param offset: an integer OFFSET parameter, or a SQL expression that provides an integer result. Pass ``None`` to reset it. .. seealso:: :meth:`_sql.GenerativeSelect.limit` :meth:`_sql.GenerativeSelect.fetch` """ self._offset_clause = self._offset_or_limit_clause(offset) @_generative @util.preload_module("sqlalchemy.sql.util") def slice(self, start, stop): """Apply LIMIT / OFFSET to this statement based on a slice. The start and stop indices behave like the argument to Python's built-in :func:`range` function. This method provides an alternative to using ``LIMIT``/``OFFSET`` to get a slice of the query. For example, :: stmt = select(User).order_by(User).id.slice(1, 3) renders as .. sourcecode:: sql SELECT users.id AS users_id, users.name AS users_name FROM users ORDER BY users.id LIMIT ? OFFSET ? (2, 1) .. note:: The :meth:`_sql.GenerativeSelect.slice` method will replace any clause applied with :meth:`_sql.GenerativeSelect.fetch`. .. versionadded:: 1.4 Added the :meth:`_sql.GenerativeSelect.slice` method generalized from the ORM. .. seealso:: :meth:`_sql.GenerativeSelect.limit` :meth:`_sql.GenerativeSelect.offset` :meth:`_sql.GenerativeSelect.fetch` """ sql_util = util.preloaded.sql_util self._fetch_clause = self._fetch_clause_options = None self._limit_clause, self._offset_clause = sql_util._make_slice( self._limit_clause, self._offset_clause, start, stop ) @_generative def order_by(self, *clauses): r"""Return a new selectable with the given list of ORDER BY criterion applied. e.g.:: stmt = select(table).order_by(table.c.id, table.c.name) :param \*clauses: a series of :class:`_expression.ColumnElement` constructs which will be used to generate an ORDER BY clause. .. seealso:: :ref:`tutorial_order_by` - in the :ref:`unified_tutorial` :ref:`tutorial_order_by_label` - in the :ref:`unified_tutorial` """ if len(clauses) == 1 and clauses[0] is None: self._order_by_clauses = () else: self._order_by_clauses += tuple( coercions.expect(roles.OrderByRole, clause) for clause in clauses ) @_generative def group_by(self, *clauses): r"""Return a new selectable with the given list of GROUP BY criterion applied. e.g.:: stmt = select(table.c.name, func.max(table.c.stat)).\ group_by(table.c.name) :param \*clauses: a series of :class:`_expression.ColumnElement` constructs which will be used to generate an GROUP BY clause. .. seealso:: :ref:`tutorial_group_by_w_aggregates` - in the :ref:`unified_tutorial` :ref:`tutorial_order_by_label` - in the :ref:`unified_tutorial` """ if len(clauses) == 1 and clauses[0] is None: self._group_by_clauses = () else: self._group_by_clauses += tuple( coercions.expect(roles.GroupByRole, clause) for clause in clauses ) @CompileState.plugin_for("default", "compound_select") class CompoundSelectState(CompileState): @util.memoized_property def _label_resolve_dict(self): # TODO: this is hacky and slow hacky_subquery = self.statement.subquery() hacky_subquery.named_with_column = False d = dict((c.key, c) for c in hacky_subquery.c) return d, d, d class CompoundSelect(HasCompileState, GenerativeSelect): """Forms the basis of ``UNION``, ``UNION ALL``, and other SELECT-based set operations. .. seealso:: :func:`_expression.union` :func:`_expression.union_all` :func:`_expression.intersect` :func:`_expression.intersect_all` :func:`_expression.except` :func:`_expression.except_all` """ __visit_name__ = "compound_select" _traverse_internals = [ ("selects", InternalTraversal.dp_clauseelement_list), ("_limit_clause", InternalTraversal.dp_clauseelement), ("_offset_clause", InternalTraversal.dp_clauseelement), ("_fetch_clause", InternalTraversal.dp_clauseelement), ("_fetch_clause_options", InternalTraversal.dp_plain_dict), ("_order_by_clauses", InternalTraversal.dp_clauseelement_list), ("_group_by_clauses", InternalTraversal.dp_clauseelement_list), ("_for_update_arg", InternalTraversal.dp_clauseelement), ("keyword", InternalTraversal.dp_string), ] + SupportsCloneAnnotations._clone_annotations_traverse_internals UNION = util.symbol("UNION") UNION_ALL = util.symbol("UNION ALL") EXCEPT = util.symbol("EXCEPT") EXCEPT_ALL = util.symbol("EXCEPT ALL") INTERSECT = util.symbol("INTERSECT") INTERSECT_ALL = util.symbol("INTERSECT ALL") _is_from_container = True def __init__(self, keyword, *selects, **kwargs): self._auto_correlate = kwargs.pop("correlate", False) self.keyword = keyword self.selects = [ coercions.expect(roles.CompoundElementRole, s).self_group( against=self ) for s in selects ] if kwargs and util.SQLALCHEMY_WARN_20: util.warn_deprecated_20( "Set functions such as union(), union_all(), extract(), etc. " "in SQLAlchemy 2.0 will accept a " "series of SELECT statements only. " "Please use generative methods such as order_by() for " "additional modifications to this CompoundSelect.", stacklevel=4, ) GenerativeSelect.__init__(self, **kwargs) @classmethod def _create_union(cls, *selects, **kwargs): r"""Return a ``UNION`` of multiple selectables. The returned object is an instance of :class:`_expression.CompoundSelect`. A similar :func:`union()` method is available on all :class:`_expression.FromClause` subclasses. :param \*selects: a list of :class:`_expression.Select` instances. :param \**kwargs: available keyword arguments are the same as those of :func:`select`. """ return CompoundSelect(CompoundSelect.UNION, *selects, **kwargs) @classmethod def _create_union_all(cls, *selects, **kwargs): r"""Return a ``UNION ALL`` of multiple selectables. The returned object is an instance of :class:`_expression.CompoundSelect`. A similar :func:`union_all()` method is available on all :class:`_expression.FromClause` subclasses. :param \*selects: a list of :class:`_expression.Select` instances. :param \**kwargs: available keyword arguments are the same as those of :func:`select`. """ return CompoundSelect(CompoundSelect.UNION_ALL, *selects, **kwargs) @classmethod def _create_except(cls, *selects, **kwargs): r"""Return an ``EXCEPT`` of multiple selectables. The returned object is an instance of :class:`_expression.CompoundSelect`. :param \*selects: a list of :class:`_expression.Select` instances. :param \**kwargs: available keyword arguments are the same as those of :func:`select`. """ return CompoundSelect(CompoundSelect.EXCEPT, *selects, **kwargs) @classmethod def _create_except_all(cls, *selects, **kwargs): r"""Return an ``EXCEPT ALL`` of multiple selectables. The returned object is an instance of :class:`_expression.CompoundSelect`. :param \*selects: a list of :class:`_expression.Select` instances. :param \**kwargs: available keyword arguments are the same as those of :func:`select`. """ return CompoundSelect(CompoundSelect.EXCEPT_ALL, *selects, **kwargs) @classmethod def _create_intersect(cls, *selects, **kwargs): r"""Return an ``INTERSECT`` of multiple selectables. The returned object is an instance of :class:`_expression.CompoundSelect`. :param \*selects: a list of :class:`_expression.Select` instances. :param \**kwargs: available keyword arguments are the same as those of :func:`select`. """ return CompoundSelect(CompoundSelect.INTERSECT, *selects, **kwargs) @classmethod def _create_intersect_all(cls, *selects, **kwargs): r"""Return an ``INTERSECT ALL`` of multiple selectables. The returned object is an instance of :class:`_expression.CompoundSelect`. :param \*selects: a list of :class:`_expression.Select` instances. :param \**kwargs: available keyword arguments are the same as those of :func:`select`. """ return CompoundSelect(CompoundSelect.INTERSECT_ALL, *selects, **kwargs) def _scalar_type(self): return self.selects[0]._scalar_type() def self_group(self, against=None): return SelectStatementGrouping(self) def is_derived_from(self, fromclause): for s in self.selects: if s.is_derived_from(fromclause): return True return False def _set_label_style(self, style): if self._label_style is not style: self = self._generate() select_0 = self.selects[0]._set_label_style(style) self.selects = [select_0] + self.selects[1:] return self def _ensure_disambiguated_names(self): new_select = self.selects[0]._ensure_disambiguated_names() if new_select is not self.selects[0]: self = self._generate() self.selects = [new_select] + self.selects[1:] return self def _generate_fromclause_column_proxies(self, subquery): # this is a slightly hacky thing - the union exports a # column that resembles just that of the *first* selectable. # to get at a "composite" column, particularly foreign keys, # you have to dig through the proxies collection which we # generate below. We may want to improve upon this, such as # perhaps _make_proxy can accept a list of other columns # that are "shared" - schema.column can then copy all the # ForeignKeys in. this would allow the union() to have all # those fks too. select_0 = self.selects[0] if self._label_style is not LABEL_STYLE_DEFAULT: select_0 = select_0.set_label_style(self._label_style) select_0._generate_fromclause_column_proxies(subquery) # hand-construct the "_proxies" collection to include all # derived columns place a 'weight' annotation corresponding # to how low in the list of select()s the column occurs, so # that the corresponding_column() operation can resolve # conflicts for subq_col, select_cols in zip( subquery.c._all_columns, zip(*[s.selected_columns for s in self.selects]), ): subq_col._proxies = [ c._annotate({"weight": i + 1}) for (i, c) in enumerate(select_cols) ] def _refresh_for_new_column(self, column): super(CompoundSelect, self)._refresh_for_new_column(column) for select in self.selects: select._refresh_for_new_column(column) @property def _all_selected_columns(self): return self.selects[0]._all_selected_columns @property def selected_columns(self): """A :class:`_expression.ColumnCollection` representing the columns that this SELECT statement or similar construct returns in its result set, not including :class:`_sql.TextClause` constructs. For a :class:`_expression.CompoundSelect`, the :attr:`_expression.CompoundSelect.selected_columns` attribute returns the selected columns of the first SELECT statement contained within the series of statements within the set operation. .. seealso:: :attr:`_sql.Select.selected_columns` .. versionadded:: 1.4 """ return self.selects[0].selected_columns @property @util.deprecated_20( ":attr:`.Executable.bind`", alternative="Bound metadata is being removed as of SQLAlchemy 2.0.", enable_warnings=False, ) def bind(self): """Returns the :class:`_engine.Engine` or :class:`_engine.Connection` to which this :class:`.Executable` is bound, or None if none found. """ if self._bind: return self._bind for s in self.selects: e = s.bind if e: return e else: return None @bind.setter def bind(self, bind): self._bind = bind class DeprecatedSelectGenerations(object): """A collection of methods available on :class:`_sql.Select`, these are all **deprecated** methods as they modify the :class:`_sql.Select` object in -place. """ @util.deprecated( "1.4", "The :meth:`_expression.Select.append_correlation` " "method is deprecated " "and will be removed in a future release. Use the generative " "method :meth:`_expression.Select.correlate`.", ) def append_correlation(self, fromclause): """Append the given correlation expression to this select() construct. This is an **in-place** mutation method; the :meth:`_expression.Select.correlate` method is preferred, as it provides standard :term:`method chaining`. """ self.correlate.non_generative(self, fromclause) @util.deprecated( "1.4", "The :meth:`_expression.Select.append_column` method is deprecated " "and will be removed in a future release. Use the generative " "method :meth:`_expression.Select.add_columns`.", ) def append_column(self, column): """Append the given column expression to the columns clause of this select() construct. E.g.:: my_select.append_column(some_table.c.new_column) This is an **in-place** mutation method; the :meth:`_expression.Select.add_columns` method is preferred, as it provides standard :term:`method chaining`. """ self.add_columns.non_generative(self, column) @util.deprecated( "1.4", "The :meth:`_expression.Select.append_prefix` method is deprecated " "and will be removed in a future release. Use the generative " "method :meth:`_expression.Select.prefix_with`.", ) def append_prefix(self, clause): """Append the given columns clause prefix expression to this select() construct. This is an **in-place** mutation method; the :meth:`_expression.Select.prefix_with` method is preferred, as it provides standard :term:`method chaining`. """ self.prefix_with.non_generative(self, clause) @util.deprecated( "1.4", "The :meth:`_expression.Select.append_whereclause` " "method is deprecated " "and will be removed in a future release. Use the generative " "method :meth:`_expression.Select.where`.", ) def append_whereclause(self, whereclause): """Append the given expression to this select() construct's WHERE criterion. The expression will be joined to existing WHERE criterion via AND. This is an **in-place** mutation method; the :meth:`_expression.Select.where` method is preferred, as it provides standard :term:`method chaining`. """ self.where.non_generative(self, whereclause) @util.deprecated( "1.4", "The :meth:`_expression.Select.append_having` method is deprecated " "and will be removed in a future release. Use the generative " "method :meth:`_expression.Select.having`.", ) def append_having(self, having): """Append the given expression to this select() construct's HAVING criterion. The expression will be joined to existing HAVING criterion via AND. This is an **in-place** mutation method; the :meth:`_expression.Select.having` method is preferred, as it provides standard :term:`method chaining`. """ self.having.non_generative(self, having) @util.deprecated( "1.4", "The :meth:`_expression.Select.append_from` method is deprecated " "and will be removed in a future release. Use the generative " "method :meth:`_expression.Select.select_from`.", ) def append_from(self, fromclause): """Append the given :class:`_expression.FromClause` expression to this select() construct's FROM clause. This is an **in-place** mutation method; the :meth:`_expression.Select.select_from` method is preferred, as it provides standard :term:`method chaining`. """ self.select_from.non_generative(self, fromclause) @CompileState.plugin_for("default", "select") class SelectState(util.MemoizedSlots, CompileState): __slots__ = ( "from_clauses", "froms", "columns_plus_names", "_label_resolve_dict", ) class default_select_compile_options(CacheableOptions): _cache_key_traversal = [] def __init__(self, statement, compiler, **kw): self.statement = statement self.from_clauses = statement._from_obj for memoized_entities in statement._memoized_select_entities: self._setup_joins( memoized_entities._setup_joins, memoized_entities._raw_columns ) if statement._setup_joins: self._setup_joins(statement._setup_joins, statement._raw_columns) self.froms = self._get_froms(statement) self.columns_plus_names = statement._generate_columns_plus_names(True) @classmethod def _plugin_not_implemented(cls): raise NotImplementedError( "The default SELECT construct without plugins does not " "implement this method." ) @classmethod def get_column_descriptions(cls, statement): cls._plugin_not_implemented() @classmethod def from_statement(cls, statement, from_statement): cls._plugin_not_implemented() @classmethod def _column_naming_convention(cls, label_style): # note: these functions won't work for TextClause objects, # which should be omitted when iterating through # _raw_columns. if label_style is LABEL_STYLE_NONE: def go(c, col_name=None): return c._proxy_key elif label_style is LABEL_STYLE_TABLENAME_PLUS_COL: names = set() pa = [] # late-constructed as needed, python 2 has no "nonlocal" def go(c, col_name=None): # we use key_label since this name is intended for targeting # within the ColumnCollection only, it's not related to SQL # rendering which always uses column name for SQL label names name = c._key_label if name in names: if not pa: pa.append(prefix_anon_map()) name = c._label_anon_key_label % pa[0] else: names.add(name) return name else: names = set() pa = [] # late-constructed as needed, python 2 has no "nonlocal" def go(c, col_name=None): name = c._proxy_key if name in names: if not pa: pa.append(prefix_anon_map()) name = c._anon_key_label % pa[0] else: names.add(name) return name return go def _get_froms(self, statement): return self._normalize_froms( itertools.chain( itertools.chain.from_iterable( [ element._from_objects for element in statement._raw_columns ] ), itertools.chain.from_iterable( [ element._from_objects for element in statement._where_criteria ] ), self.from_clauses, ), check_statement=statement, ) def _normalize_froms(self, iterable_of_froms, check_statement=None): """given an iterable of things to select FROM, reduce them to what would actually render in the FROM clause of a SELECT. This does the job of checking for JOINs, tables, etc. that are in fact overlapping due to cloning, adaption, present in overlapping joins, etc. """ seen = set() froms = [] for item in iterable_of_froms: if item._is_subquery and item.element is check_statement: raise exc.InvalidRequestError( "select() construct refers to itself as a FROM" ) if not seen.intersection(item._cloned_set): froms.append(item) seen.update(item._cloned_set) if froms: toremove = set( itertools.chain.from_iterable( [_expand_cloned(f._hide_froms) for f in froms] ) ) if toremove: # filter out to FROM clauses not in the list, # using a list to maintain ordering froms = [f for f in froms if f not in toremove] return froms def _get_display_froms( self, explicit_correlate_froms=None, implicit_correlate_froms=None ): """Return the full list of 'from' clauses to be displayed. Takes into account a set of existing froms which may be rendered in the FROM clause of enclosing selects; this Select may want to leave those absent if it is automatically correlating. """ froms = self.froms if self.statement._correlate: to_correlate = self.statement._correlate if to_correlate: froms = [ f for f in froms if f not in _cloned_intersection( _cloned_intersection( froms, explicit_correlate_froms or () ), to_correlate, ) ] if self.statement._correlate_except is not None: froms = [ f for f in froms if f not in _cloned_difference( _cloned_intersection( froms, explicit_correlate_froms or () ), self.statement._correlate_except, ) ] if ( self.statement._auto_correlate and implicit_correlate_froms and len(froms) > 1 ): froms = [ f for f in froms if f not in _cloned_intersection(froms, implicit_correlate_froms) ] if not len(froms): raise exc.InvalidRequestError( "Select statement '%r" "' returned no FROM clauses " "due to auto-correlation; " "specify correlate() " "to control correlation " "manually." % self.statement ) return froms def _memoized_attr__label_resolve_dict(self): with_cols = dict( (c._resolve_label or c._label or c.key, c) for c in self.statement._all_selected_columns if c._allow_label_resolve ) only_froms = dict( (c.key, c) for c in _select_iterables(self.froms) if c._allow_label_resolve ) only_cols = with_cols.copy() for key, value in only_froms.items(): with_cols.setdefault(key, value) return with_cols, only_froms, only_cols @classmethod def determine_last_joined_entity(cls, stmt): if stmt._setup_joins: return stmt._setup_joins[-1][0] else: return None @classmethod def all_selected_columns(cls, statement): return [c for c in _select_iterables(statement._raw_columns)] def _setup_joins(self, args, raw_columns): for (right, onclause, left, flags) in args: isouter = flags["isouter"] full = flags["full"] if left is None: ( left, replace_from_obj_index, ) = self._join_determine_implicit_left_side( raw_columns, left, right, onclause ) else: (replace_from_obj_index) = self._join_place_explicit_left_side( left ) if replace_from_obj_index is not None: # splice into an existing element in the # self._from_obj list left_clause = self.from_clauses[replace_from_obj_index] self.from_clauses = ( self.from_clauses[:replace_from_obj_index] + ( Join( left_clause, right, onclause, isouter=isouter, full=full, ), ) + self.from_clauses[replace_from_obj_index + 1 :] ) else: self.from_clauses = self.from_clauses + ( Join(left, right, onclause, isouter=isouter, full=full), ) @util.preload_module("sqlalchemy.sql.util") def _join_determine_implicit_left_side( self, raw_columns, left, right, onclause ): """When join conditions don't express the left side explicitly, determine if an existing FROM or entity in this query can serve as the left hand side. """ sql_util = util.preloaded.sql_util replace_from_obj_index = None from_clauses = self.from_clauses if from_clauses: indexes = sql_util.find_left_clause_to_join_from( from_clauses, right, onclause ) if len(indexes) == 1: replace_from_obj_index = indexes[0] left = from_clauses[replace_from_obj_index] else: potential = {} statement = self.statement for from_clause in itertools.chain( itertools.chain.from_iterable( [element._from_objects for element in raw_columns] ), itertools.chain.from_iterable( [ element._from_objects for element in statement._where_criteria ] ), ): potential[from_clause] = () all_clauses = list(potential.keys()) indexes = sql_util.find_left_clause_to_join_from( all_clauses, right, onclause ) if len(indexes) == 1: left = all_clauses[indexes[0]] if len(indexes) > 1: raise exc.InvalidRequestError( "Can't determine which FROM clause to join " "from, there are multiple FROMS which can " "join to this entity. Please use the .select_from() " "method to establish an explicit left side, as well as " "providing an explicit ON clause if not present already to " "help resolve the ambiguity." ) elif not indexes: raise exc.InvalidRequestError( "Don't know how to join to %r. " "Please use the .select_from() " "method to establish an explicit left side, as well as " "providing an explicit ON clause if not present already to " "help resolve the ambiguity." % (right,) ) return left, replace_from_obj_index @util.preload_module("sqlalchemy.sql.util") def _join_place_explicit_left_side(self, left): replace_from_obj_index = None sql_util = util.preloaded.sql_util from_clauses = list(self.statement._iterate_from_elements()) if from_clauses: indexes = sql_util.find_left_clause_that_matches_given( self.from_clauses, left ) else: indexes = [] if len(indexes) > 1: raise exc.InvalidRequestError( "Can't identify which entity in which to assign the " "left side of this join. Please use a more specific " "ON clause." ) # have an index, means the left side is already present in # an existing FROM in the self._from_obj tuple if indexes: replace_from_obj_index = indexes[0] # no index, means we need to add a new element to the # self._from_obj tuple return replace_from_obj_index class _SelectFromElements(object): def _iterate_from_elements(self): # note this does not include elements # in _setup_joins or _legacy_setup_joins seen = set() for element in self._raw_columns: for fr in element._from_objects: if fr in seen: continue seen.add(fr) yield fr for element in self._where_criteria: for fr in element._from_objects: if fr in seen: continue seen.add(fr) yield fr for element in self._from_obj: if element in seen: continue seen.add(element) yield element class _MemoizedSelectEntities( traversals.HasCacheKey, traversals.HasCopyInternals, visitors.Traversible ): __visit_name__ = "memoized_select_entities" _traverse_internals = [ ("_raw_columns", InternalTraversal.dp_clauseelement_list), ("_setup_joins", InternalTraversal.dp_setup_join_tuple), ("_legacy_setup_joins", InternalTraversal.dp_setup_join_tuple), ("_with_options", InternalTraversal.dp_executable_options), ] _annotations = util.EMPTY_DICT def _clone(self, **kw): c = self.__class__.__new__(self.__class__) c.__dict__ = {k: v for k, v in self.__dict__.items()} c._is_clone_of = self return c @classmethod def _generate_for_statement(cls, select_stmt): if ( select_stmt._setup_joins or select_stmt._legacy_setup_joins or select_stmt._with_options ): self = _MemoizedSelectEntities() self._raw_columns = select_stmt._raw_columns self._setup_joins = select_stmt._setup_joins self._legacy_setup_joins = select_stmt._legacy_setup_joins self._with_options = select_stmt._with_options select_stmt._memoized_select_entities += (self,) select_stmt._raw_columns = ( select_stmt._setup_joins ) = ( select_stmt._legacy_setup_joins ) = select_stmt._with_options = () class Select( HasPrefixes, HasSuffixes, HasHints, HasCompileState, DeprecatedSelectGenerations, _SelectFromElements, GenerativeSelect, ): """Represents a ``SELECT`` statement. The :class:`_sql.Select` object is normally constructed using the :func:`_sql.select` function. See that function for details. .. seealso:: :func:`_sql.select` :ref:`coretutorial_selecting` - in the 1.x tutorial :ref:`tutorial_selecting_data` - in the 2.0 tutorial """ __visit_name__ = "select" _setup_joins = () _legacy_setup_joins = () _memoized_select_entities = () _distinct = False _distinct_on = () _correlate = () _correlate_except = None _where_criteria = () _having_criteria = () _from_obj = () _auto_correlate = True _compile_options = SelectState.default_select_compile_options _traverse_internals = ( [ ("_raw_columns", InternalTraversal.dp_clauseelement_list), ( "_memoized_select_entities", InternalTraversal.dp_memoized_select_entities, ), ("_from_obj", InternalTraversal.dp_clauseelement_list), ("_where_criteria", InternalTraversal.dp_clauseelement_tuple), ("_having_criteria", InternalTraversal.dp_clauseelement_tuple), ("_order_by_clauses", InternalTraversal.dp_clauseelement_tuple), ("_group_by_clauses", InternalTraversal.dp_clauseelement_tuple), ("_setup_joins", InternalTraversal.dp_setup_join_tuple), ("_legacy_setup_joins", InternalTraversal.dp_setup_join_tuple), ("_correlate", InternalTraversal.dp_clauseelement_tuple), ("_correlate_except", InternalTraversal.dp_clauseelement_tuple), ("_limit_clause", InternalTraversal.dp_clauseelement), ("_offset_clause", InternalTraversal.dp_clauseelement), ("_fetch_clause", InternalTraversal.dp_clauseelement), ("_fetch_clause_options", InternalTraversal.dp_plain_dict), ("_for_update_arg", InternalTraversal.dp_clauseelement), ("_distinct", InternalTraversal.dp_boolean), ("_distinct_on", InternalTraversal.dp_clauseelement_tuple), ("_label_style", InternalTraversal.dp_plain_obj), ] + HasPrefixes._has_prefixes_traverse_internals + HasSuffixes._has_suffixes_traverse_internals + HasHints._has_hints_traverse_internals + SupportsCloneAnnotations._clone_annotations_traverse_internals + Executable._executable_traverse_internals ) _cache_key_traversal = _traverse_internals + [ ("_compile_options", InternalTraversal.dp_has_cache_key) ] @classmethod def _create_select_from_fromclause(cls, target, entities, *arg, **kw): if arg or kw: return Select.create_legacy_select(entities, *arg, **kw) else: return Select._create_select(*entities) @classmethod @util.deprecated( "2.0", "The legacy calling style of :func:`_sql.select` is deprecated and " "will be removed in SQLAlchemy 2.0. Please use the new calling " "style described at :func:`_sql.select`.", ) def create_legacy_select( cls, columns=None, whereclause=None, from_obj=None, distinct=False, having=None, correlate=True, prefixes=None, suffixes=None, **kwargs ): """Construct a new :class:`_expression.Select` using the 1.x style API. This method is called implicitly when the :func:`_expression.select` construct is used and the first argument is a Python list or other plain sequence object, which is taken to refer to the columns collection. .. versionchanged:: 1.4 Added the :meth:`.Select.create_legacy_select` constructor which documents the calling style in use when the :func:`.select` construct is invoked using 1.x-style arguments. Similar functionality is also available via the :meth:`_expression.FromClause.select` method on any :class:`_expression.FromClause`. All arguments which accept :class:`_expression.ClauseElement` arguments also accept string arguments, which will be converted as appropriate into either :func:`_expression.text()` or :func:`_expression.literal_column()` constructs. .. seealso:: :ref:`coretutorial_selecting` - Core Tutorial description of :func:`_expression.select`. :param columns: A list of :class:`_expression.ColumnElement` or :class:`_expression.FromClause` objects which will form the columns clause of the resulting statement. For those objects that are instances of :class:`_expression.FromClause` (typically :class:`_schema.Table` or :class:`_expression.Alias` objects), the :attr:`_expression.FromClause.c` collection is extracted to form a collection of :class:`_expression.ColumnElement` objects. This parameter will also accept :class:`_expression.TextClause` constructs as given, as well as ORM-mapped classes. .. note:: The :paramref:`_expression.select.columns` parameter is not available in the method form of :func:`_expression.select`, e.g. :meth:`_expression.FromClause.select`. .. seealso:: :meth:`_expression.Select.column` :meth:`_expression.Select.with_only_columns` :param whereclause: A :class:`_expression.ClauseElement` expression which will be used to form the ``WHERE`` clause. It is typically preferable to add WHERE criterion to an existing :class:`_expression.Select` using method chaining with :meth:`_expression.Select.where`. .. seealso:: :meth:`_expression.Select.where` :param from_obj: A list of :class:`_expression.ClauseElement` objects which will be added to the ``FROM`` clause of the resulting statement. This is equivalent to calling :meth:`_expression.Select.select_from` using method chaining on an existing :class:`_expression.Select` object. .. seealso:: :meth:`_expression.Select.select_from` - full description of explicit FROM clause specification. :param bind=None: an :class:`_engine.Engine` or :class:`_engine.Connection` instance to which the resulting :class:`_expression.Select` object will be bound. The :class:`_expression.Select` object will otherwise automatically bind to whatever :class:`~.base.Connectable` instances can be located within its contained :class:`_expression.ClauseElement` members. :param correlate=True: indicates that this :class:`_expression.Select` object should have its contained :class:`_expression.FromClause` elements "correlated" to an enclosing :class:`_expression.Select` object. It is typically preferable to specify correlations on an existing :class:`_expression.Select` construct using :meth:`_expression.Select.correlate`. .. seealso:: :meth:`_expression.Select.correlate` - full description of correlation. :param distinct=False: when ``True``, applies a ``DISTINCT`` qualifier to the columns clause of the resulting statement. The boolean argument may also be a column expression or list of column expressions - this is a special calling form which is understood by the PostgreSQL dialect to render the ``DISTINCT ON ()`` syntax. ``distinct`` is also available on an existing :class:`_expression.Select` object via the :meth:`_expression.Select.distinct` method. .. seealso:: :meth:`_expression.Select.distinct` :param group_by: a list of :class:`_expression.ClauseElement` objects which will comprise the ``GROUP BY`` clause of the resulting select. This parameter is typically specified more naturally using the :meth:`_expression.Select.group_by` method on an existing :class:`_expression.Select`. .. seealso:: :meth:`_expression.Select.group_by` :param having: a :class:`_expression.ClauseElement` that will comprise the ``HAVING`` clause of the resulting select when ``GROUP BY`` is used. This parameter is typically specified more naturally using the :meth:`_expression.Select.having` method on an existing :class:`_expression.Select`. .. seealso:: :meth:`_expression.Select.having` :param limit=None: a numerical value which usually renders as a ``LIMIT`` expression in the resulting select. Backends that don't support ``LIMIT`` will attempt to provide similar functionality. This parameter is typically specified more naturally using the :meth:`_expression.Select.limit` method on an existing :class:`_expression.Select`. .. seealso:: :meth:`_expression.Select.limit` :param offset=None: a numeric value which usually renders as an ``OFFSET`` expression in the resulting select. Backends that don't support ``OFFSET`` will attempt to provide similar functionality. This parameter is typically specified more naturally using the :meth:`_expression.Select.offset` method on an existing :class:`_expression.Select`. .. seealso:: :meth:`_expression.Select.offset` :param order_by: a scalar or list of :class:`_expression.ClauseElement` objects which will comprise the ``ORDER BY`` clause of the resulting select. This parameter is typically specified more naturally using the :meth:`_expression.Select.order_by` method on an existing :class:`_expression.Select`. .. seealso:: :meth:`_expression.Select.order_by` :param use_labels=False: when ``True``, the statement will be generated using labels for each column in the columns clause, which qualify each column with its parent table's (or aliases) name so that name conflicts between columns in different tables don't occur. The format of the label is ``_``. The "c" collection of a :class:`_expression.Subquery` created against this :class:`_expression.Select` object, as well as the :attr:`_expression.Select.selected_columns` collection of the :class:`_expression.Select` itself, will use these names for targeting column members. This parameter can also be specified on an existing :class:`_expression.Select` object using the :meth:`_expression.Select.set_label_style` method. .. seealso:: :meth:`_expression.Select.set_label_style` """ self = cls.__new__(cls) self._auto_correlate = correlate if distinct is not False: if distinct is True: self.distinct.non_generative(self) else: self.distinct.non_generative(self, *util.to_list(distinct)) if from_obj is not None: self.select_from.non_generative(self, *util.to_list(from_obj)) try: cols_present = bool(columns) except TypeError as err: util.raise_( exc.ArgumentError( "select() construct created in legacy mode, i.e. with " "keyword arguments, must provide the columns argument as " "a Python list or other iterable.", code="c9ae", ), from_=err, ) if cols_present: self._raw_columns = [ coercions.expect( roles.ColumnsClauseRole, c, apply_propagate_attrs=self ) for c in columns ] else: self._raw_columns = [] if whereclause is not None: self.where.non_generative(self, whereclause) if having is not None: self.having.non_generative(self, having) if prefixes: self._setup_prefixes(prefixes) if suffixes: self._setup_suffixes(suffixes) GenerativeSelect.__init__(self, **kwargs) return self @classmethod def _create_future_select(cls, *entities): r"""Construct a new :class:`_expression.Select` using the 2. x style API. .. versionadded:: 1.4 - The :func:`_sql.select` function now accepts column arguments positionally. The top-level :func:`_sql.select` function will automatically use the 1.x or 2.x style API based on the incoming arguments; using :func:`_future.select` from the ``sqlalchemy.future`` module will enforce that only the 2.x style constructor is used. Similar functionality is also available via the :meth:`_expression.FromClause.select` method on any :class:`_expression.FromClause`. .. seealso:: :ref:`coretutorial_selecting` - Core Tutorial description of :func:`_expression.select`. :param \*entities: Entities to SELECT from. For Core usage, this is typically a series of :class:`_expression.ColumnElement` and / or :class:`_expression.FromClause` objects which will form the columns clause of the resulting statement. For those objects that are instances of :class:`_expression.FromClause` (typically :class:`_schema.Table` or :class:`_expression.Alias` objects), the :attr:`_expression.FromClause.c` collection is extracted to form a collection of :class:`_expression.ColumnElement` objects. This parameter will also accept :class:`_expression.TextClause` constructs as given, as well as ORM-mapped classes. """ self = cls.__new__(cls) self._raw_columns = [ coercions.expect( roles.ColumnsClauseRole, ent, apply_propagate_attrs=self ) for ent in entities ] GenerativeSelect.__init__(self) return self _create_select = _create_future_select @classmethod def _create(cls, *args, **kw): r"""Create a :class:`.Select` using either the 1.x or 2.0 constructor style. For the legacy calling style, see :meth:`.Select.create_legacy_select`. If the first argument passed is a Python sequence or if keyword arguments are present, this style is used. .. versionadded:: 2.0 - the :func:`_future.select` construct is the same construct as the one returned by :func:`_expression.select`, except that the function only accepts the "columns clause" entities up front; the rest of the state of the SELECT should be built up using generative methods. Similar functionality is also available via the :meth:`_expression.FromClause.select` method on any :class:`_expression.FromClause`. .. seealso:: :ref:`coretutorial_selecting` - Core Tutorial description of :func:`_expression.select`. :param \*entities: Entities to SELECT from. For Core usage, this is typically a series of :class:`_expression.ColumnElement` and / or :class:`_expression.FromClause` objects which will form the columns clause of the resulting statement. For those objects that are instances of :class:`_expression.FromClause` (typically :class:`_schema.Table` or :class:`_expression.Alias` objects), the :attr:`_expression.FromClause.c` collection is extracted to form a collection of :class:`_expression.ColumnElement` objects. This parameter will also accept :class:`_expression.TextClause` constructs as given, as well as ORM-mapped classes. """ if ( args and ( isinstance(args[0], list) or ( hasattr(args[0], "__iter__") and not isinstance( args[0], util.string_types + (ClauseElement,) ) and inspect(args[0], raiseerr=False) is None and not hasattr(args[0], "__clause_element__") ) ) ) or kw: return cls.create_legacy_select(*args, **kw) else: return cls._create_future_select(*args) def __init__(self): raise NotImplementedError() def _scalar_type(self): elem = self._raw_columns[0] cols = list(elem._select_iterable) return cols[0].type def filter(self, *criteria): """A synonym for the :meth:`_future.Select.where` method.""" return self.where(*criteria) def _filter_by_zero(self): if self._setup_joins: meth = SelectState.get_plugin_class( self ).determine_last_joined_entity _last_joined_entity = meth(self) if _last_joined_entity is not None: return _last_joined_entity if self._from_obj: return self._from_obj[0] return self._raw_columns[0] def filter_by(self, **kwargs): r"""apply the given filtering criterion as a WHERE clause to this select. """ from_entity = self._filter_by_zero() clauses = [ _entity_namespace_key(from_entity, key) == value for key, value in kwargs.items() ] return self.filter(*clauses) @property def column_descriptions(self): """Return a 'column descriptions' structure which may be :term:`plugin-specific`. """ meth = SelectState.get_plugin_class(self).get_column_descriptions return meth(self) def from_statement(self, statement): """Apply the columns which this :class:`.Select` would select onto another statement. This operation is :term:`plugin-specific` and will raise a not supported exception if this :class:`_sql.Select` does not select from plugin-enabled entities. The statement is typically either a :func:`_expression.text` or :func:`_expression.select` construct, and should return the set of columns appropriate to the entities represented by this :class:`.Select`. .. seealso:: :ref:`orm_queryguide_selecting_text` - usage examples in the ORM Querying Guide """ meth = SelectState.get_plugin_class(self).from_statement return meth(self, statement) @_generative def join(self, target, onclause=None, isouter=False, full=False): r"""Create a SQL JOIN against this :class:`_expression.Select` object's criterion and apply generatively, returning the newly resulting :class:`_expression.Select`. E.g.:: stmt = select(user_table).join(address_table, user_table.c.id == address_table.c.user_id) The above statement generates SQL similar to:: SELECT user.id, user.name FROM user JOIN address ON user.id = address.user_id .. versionchanged:: 1.4 :meth:`_expression.Select.join` now creates a :class:`_sql.Join` object between a :class:`_sql.FromClause` source that is within the FROM clause of the existing SELECT, and a given target :class:`_sql.FromClause`, and then adds this :class:`_sql.Join` to the FROM clause of the newly generated SELECT statement. This is completely reworked from the behavior in 1.3, which would instead create a subquery of the entire :class:`_expression.Select` and then join that subquery to the target. This is a **backwards incompatible change** as the previous behavior was mostly useless, producing an unnamed subquery rejected by most databases in any case. The new behavior is modeled after that of the very successful :meth:`_orm.Query.join` method in the ORM, in order to support the functionality of :class:`_orm.Query` being available by using a :class:`_sql.Select` object with an :class:`_orm.Session`. See the notes for this change at :ref:`change_select_join`. :param target: target table to join towards :param onclause: ON clause of the join. If omitted, an ON clause is generated automatically based on the :class:`_schema.ForeignKey` linkages between the two tables, if one can be unambiguously determined, otherwise an error is raised. :param isouter: if True, generate LEFT OUTER join. Same as :meth:`_expression.Select.outerjoin`. :param full: if True, generate FULL OUTER join. .. seealso:: :ref:`tutorial_select_join` - in the :doc:`/tutorial/index` :ref:`orm_queryguide_joins` - in the :ref:`queryguide_toplevel` :meth:`_expression.Select.join_from` :meth:`_expression.Select.outerjoin` """ # noqa: E501 target = coercions.expect( roles.JoinTargetRole, target, apply_propagate_attrs=self ) if onclause is not None: onclause = coercions.expect(roles.OnClauseRole, onclause) self._setup_joins += ( (target, onclause, None, {"isouter": isouter, "full": full}), ) def outerjoin_from(self, from_, target, onclause=None, full=False): r"""Create a SQL LEFT OUTER JOIN against this :class:`_expression.Select` object's criterion and apply generatively, returning the newly resulting :class:`_expression.Select`. Usage is the same as that of :meth:`_selectable.Select.join_from`. """ return self.join_from( from_, target, onclause=onclause, isouter=True, full=full ) @_generative def join_from( self, from_, target, onclause=None, isouter=False, full=False ): r"""Create a SQL JOIN against this :class:`_expression.Select` object's criterion and apply generatively, returning the newly resulting :class:`_expression.Select`. E.g.:: stmt = select(user_table, address_table).join_from( user_table, address_table, user_table.c.id == address_table.c.user_id ) The above statement generates SQL similar to:: SELECT user.id, user.name, address.id, address.email, address.user_id FROM user JOIN address ON user.id = address.user_id .. versionadded:: 1.4 :param from\_: the left side of the join, will be rendered in the FROM clause and is roughly equivalent to using the :meth:`.Select.select_from` method. :param target: target table to join towards :param onclause: ON clause of the join. :param isouter: if True, generate LEFT OUTER join. Same as :meth:`_expression.Select.outerjoin`. :param full: if True, generate FULL OUTER join. .. seealso:: :ref:`tutorial_select_join` - in the :doc:`/tutorial/index` :ref:`orm_queryguide_joins` - in the :ref:`queryguide_toplevel` :meth:`_expression.Select.join` """ # noqa: E501 # note the order of parsing from vs. target is important here, as we # are also deriving the source of the plugin (i.e. the subject mapper # in an ORM query) which should favor the "from_" over the "target" from_ = coercions.expect( roles.FromClauseRole, from_, apply_propagate_attrs=self ) target = coercions.expect( roles.JoinTargetRole, target, apply_propagate_attrs=self ) if onclause is not None: onclause = coercions.expect(roles.OnClauseRole, onclause) self._setup_joins += ( (target, onclause, from_, {"isouter": isouter, "full": full}), ) def outerjoin(self, target, onclause=None, full=False): """Create a left outer join. Parameters are the same as that of :meth:`_expression.Select.join`. .. versionchanged:: 1.4 :meth:`_expression.Select.outerjoin` now creates a :class:`_sql.Join` object between a :class:`_sql.FromClause` source that is within the FROM clause of the existing SELECT, and a given target :class:`_sql.FromClause`, and then adds this :class:`_sql.Join` to the FROM clause of the newly generated SELECT statement. This is completely reworked from the behavior in 1.3, which would instead create a subquery of the entire :class:`_expression.Select` and then join that subquery to the target. This is a **backwards incompatible change** as the previous behavior was mostly useless, producing an unnamed subquery rejected by most databases in any case. The new behavior is modeled after that of the very successful :meth:`_orm.Query.join` method in the ORM, in order to support the functionality of :class:`_orm.Query` being available by using a :class:`_sql.Select` object with an :class:`_orm.Session`. See the notes for this change at :ref:`change_select_join`. .. seealso:: :ref:`tutorial_select_join` - in the :doc:`/tutorial/index` :ref:`orm_queryguide_joins` - in the :ref:`queryguide_toplevel` :meth:`_expression.Select.join` """ return self.join(target, onclause=onclause, isouter=True, full=full) @property def froms(self): """Return the displayed list of :class:`_expression.FromClause` elements. """ return self._compile_state_factory(self, None)._get_display_froms() @property def inner_columns(self): """An iterator of all :class:`_expression.ColumnElement` expressions which would be rendered into the columns clause of the resulting SELECT statement. This method is legacy as of 1.4 and is superseded by the :attr:`_expression.Select.exported_columns` collection. """ return iter(self._all_selected_columns) def is_derived_from(self, fromclause): if self in fromclause._cloned_set: return True for f in self._iterate_from_elements(): if f.is_derived_from(fromclause): return True return False def _copy_internals(self, clone=_clone, **kw): # Select() object has been cloned and probably adapted by the # given clone function. Apply the cloning function to internal # objects # 1. keep a dictionary of the froms we've cloned, and what # they've become. This allows us to ensure the same cloned from # is used when other items such as columns are "cloned" all_the_froms = set( itertools.chain( _from_objects(*self._raw_columns), _from_objects(*self._where_criteria), ) ) # do a clone for the froms we've gathered. what is important here # is if any of the things we are selecting from, like tables, # were converted into Join objects. if so, these need to be # added to _from_obj explicitly, because otherwise they won't be # part of the new state, as they don't associate themselves with # their columns. new_froms = {f: clone(f, **kw) for f in all_the_froms} # 2. copy FROM collections, adding in joins that we've created. existing_from_obj = [clone(f, **kw) for f in self._from_obj] add_froms = ( set(f for f in new_froms.values() if isinstance(f, Join)) .difference(all_the_froms) .difference(existing_from_obj) ) self._from_obj = tuple(existing_from_obj) + tuple(add_froms) # 3. clone everything else, making sure we use columns # corresponding to the froms we just made. def replace(obj, **kw): if isinstance(obj, ColumnClause) and obj.table in new_froms: newelem = new_froms[obj.table].corresponding_column(obj) return newelem kw["replace"] = replace # copy everything else. for table-ish things like correlate, # correlate_except, setup_joins, these clone normally. For # column-expression oriented things like raw_columns, where_criteria, # order by, we get this from the new froms. super(Select, self)._copy_internals( clone=clone, omit_attrs=("_from_obj",), **kw ) self._reset_memoizations() def get_children(self, **kwargs): return itertools.chain( super(Select, self).get_children( omit_attrs=["_from_obj", "_correlate", "_correlate_except"] ), self._iterate_from_elements(), ) @_generative def add_columns(self, *columns): """Return a new :func:`_expression.select` construct with the given column expressions added to its columns clause. E.g.:: my_select = my_select.add_columns(table.c.new_column) See the documentation for :meth:`_expression.Select.with_only_columns` for guidelines on adding /replacing the columns of a :class:`_expression.Select` object. """ self._reset_memoizations() self._raw_columns = self._raw_columns + [ coercions.expect( roles.ColumnsClauseRole, column, apply_propagate_attrs=self ) for column in columns ] def _set_entities(self, entities): self._raw_columns = [ coercions.expect( roles.ColumnsClauseRole, ent, apply_propagate_attrs=self ) for ent in util.to_list(entities) ] @util.deprecated( "1.4", "The :meth:`_expression.Select.column` method is deprecated and will " "be removed in a future release. Please use " ":meth:`_expression.Select.add_columns`", ) def column(self, column): """Return a new :func:`_expression.select` construct with the given column expression added to its columns clause. E.g.:: my_select = my_select.column(table.c.new_column) See the documentation for :meth:`_expression.Select.with_only_columns` for guidelines on adding /replacing the columns of a :class:`_expression.Select` object. """ return self.add_columns(column) @util.preload_module("sqlalchemy.sql.util") def reduce_columns(self, only_synonyms=True): """Return a new :func:`_expression.select` construct with redundantly named, equivalently-valued columns removed from the columns clause. "Redundant" here means two columns where one refers to the other either based on foreign key, or via a simple equality comparison in the WHERE clause of the statement. The primary purpose of this method is to automatically construct a select statement with all uniquely-named columns, without the need to use table-qualified labels as :meth:`_expression.Select.set_label_style` does. When columns are omitted based on foreign key, the referred-to column is the one that's kept. When columns are omitted based on WHERE equivalence, the first column in the columns clause is the one that's kept. :param only_synonyms: when True, limit the removal of columns to those which have the same name as the equivalent. Otherwise, all columns that are equivalent to another are removed. """ return self.with_only_columns( *util.preloaded.sql_util.reduce_columns( self._all_selected_columns, only_synonyms=only_synonyms, *(self._where_criteria + self._from_obj) ) ) @_generative def with_only_columns(self, *columns): r"""Return a new :func:`_expression.select` construct with its columns clause replaced with the given columns. This method is exactly equivalent to as if the original :func:`_expression.select` had been called with the given columns clause. I.e. a statement:: s = select(table1.c.a, table1.c.b) s = s.with_only_columns(table1.c.b) should be exactly equivalent to:: s = select(table1.c.b) Note that this will also dynamically alter the FROM clause of the statement if it is not explicitly stated. To maintain the FROM clause, ensure the :meth:`_sql.Select.select_from` method is used appropriately:: s = select(table1.c.a, table2.c.b) s = s.select_from(table2.c.b).with_only_columns(table1.c.a) :param \*columns: column expressions to be used. .. versionchanged:: 1.4 the :meth:`_sql.Select.with_only_columns` method accepts the list of column expressions positionally; passing the expressions as a list is deprecated. """ # memoizations should be cleared here as of # I95c560ffcbfa30b26644999412fb6a385125f663 , asserting this # is the case for now. self._assert_no_memoizations() _MemoizedSelectEntities._generate_for_statement(self) self._raw_columns = [ coercions.expect(roles.ColumnsClauseRole, c) for c in coercions._expression_collection_was_a_list( "columns", "Select.with_only_columns", columns ) ] @property def whereclause(self): """Return the completed WHERE clause for this :class:`_expression.Select` statement. This assembles the current collection of WHERE criteria into a single :class:`_expression.BooleanClauseList` construct. .. versionadded:: 1.4 """ return BooleanClauseList._construct_for_whereclause( self._where_criteria ) _whereclause = whereclause @_generative def where(self, *whereclause): """Return a new :func:`_expression.select` construct with the given expression added to its WHERE clause, joined to the existing clause via AND, if any. """ assert isinstance(self._where_criteria, tuple) for criterion in whereclause: where_criteria = coercions.expect(roles.WhereHavingRole, criterion) self._where_criteria += (where_criteria,) @_generative def having(self, having): """Return a new :func:`_expression.select` construct with the given expression added to its HAVING clause, joined to the existing clause via AND, if any. """ self._having_criteria += ( coercions.expect(roles.WhereHavingRole, having), ) @_generative def distinct(self, *expr): r"""Return a new :func:`_expression.select` construct which will apply DISTINCT to its columns clause. :param \*expr: optional column expressions. When present, the PostgreSQL dialect will render a ``DISTINCT ON (>)`` construct. .. deprecated:: 1.4 Using \*expr in other dialects is deprecated and will raise :class:`_exc.CompileError` in a future version. """ if expr: self._distinct = True self._distinct_on = self._distinct_on + tuple( coercions.expect(roles.ByOfRole, e) for e in expr ) else: self._distinct = True @_generative def select_from(self, *froms): r"""Return a new :func:`_expression.select` construct with the given FROM expression(s) merged into its list of FROM objects. E.g.:: table1 = table('t1', column('a')) table2 = table('t2', column('b')) s = select(table1.c.a).\ select_from( table1.join(table2, table1.c.a==table2.c.b) ) The "from" list is a unique set on the identity of each element, so adding an already present :class:`_schema.Table` or other selectable will have no effect. Passing a :class:`_expression.Join` that refers to an already present :class:`_schema.Table` or other selectable will have the effect of concealing the presence of that selectable as an individual element in the rendered FROM list, instead rendering it into a JOIN clause. While the typical purpose of :meth:`_expression.Select.select_from` is to replace the default, derived FROM clause with a join, it can also be called with individual table elements, multiple times if desired, in the case that the FROM clause cannot be fully derived from the columns clause:: select(func.count('*')).select_from(table1) """ self._from_obj += tuple( coercions.expect( roles.FromClauseRole, fromclause, apply_propagate_attrs=self ) for fromclause in froms ) @_generative def correlate(self, *fromclauses): r"""Return a new :class:`_expression.Select` which will correlate the given FROM clauses to that of an enclosing :class:`_expression.Select`. Calling this method turns off the :class:`_expression.Select` object's default behavior of "auto-correlation". Normally, FROM elements which appear in a :class:`_expression.Select` that encloses this one via its :term:`WHERE clause`, ORDER BY, HAVING or :term:`columns clause` will be omitted from this :class:`_expression.Select` object's :term:`FROM clause`. Setting an explicit correlation collection using the :meth:`_expression.Select.correlate` method provides a fixed list of FROM objects that can potentially take place in this process. When :meth:`_expression.Select.correlate` is used to apply specific FROM clauses for correlation, the FROM elements become candidates for correlation regardless of how deeply nested this :class:`_expression.Select` object is, relative to an enclosing :class:`_expression.Select` which refers to the same FROM object. This is in contrast to the behavior of "auto-correlation" which only correlates to an immediate enclosing :class:`_expression.Select`. Multi-level correlation ensures that the link between enclosed and enclosing :class:`_expression.Select` is always via at least one WHERE/ORDER BY/HAVING/columns clause in order for correlation to take place. If ``None`` is passed, the :class:`_expression.Select` object will correlate none of its FROM entries, and all will render unconditionally in the local FROM clause. :param \*fromclauses: a list of one or more :class:`_expression.FromClause` constructs, or other compatible constructs (i.e. ORM-mapped classes) to become part of the correlate collection. .. seealso:: :meth:`_expression.Select.correlate_except` :ref:`correlated_subqueries` """ self._auto_correlate = False if fromclauses and fromclauses[0] in {None, False}: self._correlate = () else: self._correlate = self._correlate + tuple( coercions.expect(roles.FromClauseRole, f) for f in fromclauses ) @_generative def correlate_except(self, *fromclauses): r"""Return a new :class:`_expression.Select` which will omit the given FROM clauses from the auto-correlation process. Calling :meth:`_expression.Select.correlate_except` turns off the :class:`_expression.Select` object's default behavior of "auto-correlation" for the given FROM elements. An element specified here will unconditionally appear in the FROM list, while all other FROM elements remain subject to normal auto-correlation behaviors. If ``None`` is passed, the :class:`_expression.Select` object will correlate all of its FROM entries. :param \*fromclauses: a list of one or more :class:`_expression.FromClause` constructs, or other compatible constructs (i.e. ORM-mapped classes) to become part of the correlate-exception collection. .. seealso:: :meth:`_expression.Select.correlate` :ref:`correlated_subqueries` """ self._auto_correlate = False if fromclauses and fromclauses[0] in {None, False}: self._correlate_except = () else: self._correlate_except = (self._correlate_except or ()) + tuple( coercions.expect(roles.FromClauseRole, f) for f in fromclauses ) @HasMemoized.memoized_attribute def selected_columns(self): """A :class:`_expression.ColumnCollection` representing the columns that this SELECT statement or similar construct returns in its result set, not including :class:`_sql.TextClause` constructs. This collection differs from the :attr:`_expression.FromClause.columns` collection of a :class:`_expression.FromClause` in that the columns within this collection cannot be directly nested inside another SELECT statement; a subquery must be applied first which provides for the necessary parenthesization required by SQL. For a :func:`_expression.select` construct, the collection here is exactly what would be rendered inside the "SELECT" statement, and the :class:`_expression.ColumnElement` objects are directly present as they were given, e.g.:: col1 = column('q', Integer) col2 = column('p', Integer) stmt = select(col1, col2) Above, ``stmt.selected_columns`` would be a collection that contains the ``col1`` and ``col2`` objects directly. For a statement that is against a :class:`_schema.Table` or other :class:`_expression.FromClause`, the collection will use the :class:`_expression.ColumnElement` objects that are in the :attr:`_expression.FromClause.c` collection of the from element. .. note:: The :attr:`_sql.Select.selected_columns` collection does not include expressions established in the columns clause using the :func:`_sql.text` construct; these are silently omitted from the collection. To use plain textual column expressions inside of a :class:`_sql.Select` construct, use the :func:`_sql.literal_column` construct. .. versionadded:: 1.4 """ # compare to SelectState._generate_columns_plus_names, which # generates the actual names used in the SELECT string. that # method is more complex because it also renders columns that are # fully ambiguous, e.g. same column more than once. conv = SelectState._column_naming_convention(self._label_style) return ColumnCollection( [ (conv(c), c) for c in self._all_selected_columns if not c._is_text_clause ] ).as_immutable() @HasMemoized.memoized_attribute def _all_selected_columns(self): meth = SelectState.get_plugin_class(self).all_selected_columns return list(meth(self)) def _ensure_disambiguated_names(self): if self._label_style is LABEL_STYLE_NONE: self = self.set_label_style(LABEL_STYLE_DISAMBIGUATE_ONLY) return self def _generate_columns_plus_names(self, anon_for_dupe_key): """Generate column names as rendered in a SELECT statement by the compiler. This is distinct from other name generators that are intended for population of .c collections and similar, which may have slightly different rules. """ cols = self._all_selected_columns # when use_labels is on: # in all cases == if we see the same label name, use _label_anon_label # for subsequent occurrences of that label # # anon_for_dupe_key == if we see the same column object multiple # times under a particular name, whether it's the _label name or the # anon label, apply _dedupe_label_anon_label to the subsequent # occurrences of it. if self._label_style is LABEL_STYLE_NONE: # don't generate any labels same_cols = set() return [ (None, c, c in same_cols or same_cols.add(c)) for c in cols ] else: names = {} use_tablename_labels = ( self._label_style is LABEL_STYLE_TABLENAME_PLUS_COL ) def name_for_col(c): if not c._render_label_in_columns_clause: return (None, c, False) elif use_tablename_labels: if c._label is None: repeated = c._anon_name_label in names names[c._anon_name_label] = c return (None, c, repeated) elif getattr(c, "name", None) is None: # this is a scalar_select(). need to improve this case repeated = c._anon_name_label in names names[c._anon_name_label] = c return (None, c, repeated) if use_tablename_labels: name = effective_name = c._label else: name = None effective_name = c.name repeated = False if effective_name in names: # when looking to see if names[name] is the same column as # c, use hash(), so that an annotated version of the column # is seen as the same as the non-annotated if hash(names[effective_name]) != hash(c): # different column under the same name. apply # disambiguating label if use_tablename_labels: name = c._label_anon_label else: name = c._anon_name_label if anon_for_dupe_key and name in names: # here, c._label_anon_label is definitely unique to # that column identity (or annotated version), so # this should always be true. # this is also an infrequent codepath because # you need two levels of duplication to be here assert hash(names[name]) == hash(c) # the column under the disambiguating label is # already present. apply the "dedupe" label to # subsequent occurrences of the column so that the # original stays non-ambiguous if use_tablename_labels: name = c._dedupe_label_anon_label else: name = c._dedupe_anon_label repeated = True else: names[name] = c elif anon_for_dupe_key: # same column under the same name. apply the "dedupe" # label so that the original stays non-ambiguous if use_tablename_labels: name = c._dedupe_label_anon_label else: name = c._dedupe_anon_label repeated = True else: names[effective_name] = c return name, c, repeated return [name_for_col(c) for c in cols] def _generate_fromclause_column_proxies(self, subquery): """Generate column proxies to place in the exported ``.c`` collection of a subquery.""" keys_seen = set() prox = [] pa = None tablename_plus_col = ( self._label_style is LABEL_STYLE_TABLENAME_PLUS_COL ) disambiguate_only = self._label_style is LABEL_STYLE_DISAMBIGUATE_ONLY for name, c, repeated in self._generate_columns_plus_names(False): if c._is_text_clause: continue elif tablename_plus_col: key = c._key_label if key is not None and key in keys_seen: if pa is None: pa = prefix_anon_map() key = c._label_anon_key_label % pa keys_seen.add(key) elif disambiguate_only: key = c._proxy_key if key is not None and key in keys_seen: if pa is None: pa = prefix_anon_map() key = c._anon_key_label % pa keys_seen.add(key) else: key = c._proxy_key prox.append( c._make_proxy( subquery, key=key, name=name, name_is_truncatable=True ) ) subquery._columns._populate_separate_keys(prox) def _needs_parens_for_grouping(self): return self._has_row_limiting_clause or bool( self._order_by_clause.clauses ) def self_group(self, against=None): """Return a 'grouping' construct as per the :class:`_expression.ClauseElement` specification. This produces an element that can be embedded in an expression. Note that this method is called automatically as needed when constructing expressions and should not require explicit use. """ if ( isinstance(against, CompoundSelect) and not self._needs_parens_for_grouping() ): return self else: return SelectStatementGrouping(self) def union(self, other, **kwargs): """Return a SQL ``UNION`` of this select() construct against the given selectable. """ return CompoundSelect._create_union(self, other, **kwargs) def union_all(self, other, **kwargs): """Return a SQL ``UNION ALL`` of this select() construct against the given selectable. """ return CompoundSelect._create_union_all(self, other, **kwargs) def except_(self, other, **kwargs): """Return a SQL ``EXCEPT`` of this select() construct against the given selectable. """ return CompoundSelect._create_except(self, other, **kwargs) def except_all(self, other, **kwargs): """Return a SQL ``EXCEPT ALL`` of this select() construct against the given selectable. """ return CompoundSelect._create_except_all(self, other, **kwargs) def intersect(self, other, **kwargs): """Return a SQL ``INTERSECT`` of this select() construct against the given selectable. """ return CompoundSelect._create_intersect(self, other, **kwargs) def intersect_all(self, other, **kwargs): """Return a SQL ``INTERSECT ALL`` of this select() construct against the given selectable. """ return CompoundSelect._create_intersect_all(self, other, **kwargs) @property @util.deprecated_20( ":attr:`.Executable.bind`", alternative="Bound metadata is being removed as of SQLAlchemy 2.0.", enable_warnings=False, ) def bind(self): """Returns the :class:`_engine.Engine` or :class:`_engine.Connection` to which this :class:`.Executable` is bound, or None if none found. """ if self._bind: return self._bind for item in self._iterate_from_elements(): if item._is_subquery and item.element is self: raise exc.InvalidRequestError( "select() construct refers to itself as a FROM" ) e = item.bind if e: self._bind = e return e else: break for c in self._raw_columns: e = c.bind if e: self._bind = e return e @bind.setter def bind(self, bind): self._bind = bind class ScalarSelect(roles.InElementRole, Generative, Grouping): """Represent a scalar subquery. A :class:`_sql.ScalarSelect` is created by invoking the :meth:`_sql.SelectBase.scalar_subquery` method. The object then participates in other SQL expressions as a SQL column expression within the :class:`_sql.ColumnElement` hierarchy. .. seealso:: :meth:`_sql.SelectBase.scalar_subquery` :ref:`tutorial_scalar_subquery` - in the 2.0 tutorial :ref:`scalar_selects` - in the 1.x tutorial """ _from_objects = [] _is_from_container = True _is_implicitly_boolean = False inherit_cache = True def __init__(self, element): self.element = element self.type = element._scalar_type() @property def columns(self): raise exc.InvalidRequestError( "Scalar Select expression has no " "columns; use this object directly " "within a column-level expression." ) c = columns @_generative def where(self, crit): """Apply a WHERE clause to the SELECT statement referred to by this :class:`_expression.ScalarSelect`. """ self.element = self.element.where(crit) def self_group(self, **kwargs): return self @_generative def correlate(self, *fromclauses): r"""Return a new :class:`_expression.ScalarSelect` which will correlate the given FROM clauses to that of an enclosing :class:`_expression.Select`. This method is mirrored from the :meth:`_sql.Select.correlate` method of the underlying :class:`_sql.Select`. The method applies the :meth:_sql.Select.correlate` method, then returns a new :class:`_sql.ScalarSelect` against that statement. .. versionadded:: 1.4 Previously, the :meth:`_sql.ScalarSelect.correlate` method was only available from :class:`_sql.Select`. :param \*fromclauses: a list of one or more :class:`_expression.FromClause` constructs, or other compatible constructs (i.e. ORM-mapped classes) to become part of the correlate collection. .. seealso:: :meth:`_expression.ScalarSelect.correlate_except` :ref:`tutorial_scalar_subquery` - in the 2.0 tutorial :ref:`correlated_subqueries` - in the 1.x tutorial """ self.element = self.element.correlate(*fromclauses) @_generative def correlate_except(self, *fromclauses): r"""Return a new :class:`_expression.ScalarSelect` which will omit the given FROM clauses from the auto-correlation process. This method is mirrored from the :meth:`_sql.Select.correlate_except` method of the underlying :class:`_sql.Select`. The method applies the :meth:_sql.Select.correlate_except` method, then returns a new :class:`_sql.ScalarSelect` against that statement. .. versionadded:: 1.4 Previously, the :meth:`_sql.ScalarSelect.correlate_except` method was only available from :class:`_sql.Select`. :param \*fromclauses: a list of one or more :class:`_expression.FromClause` constructs, or other compatible constructs (i.e. ORM-mapped classes) to become part of the correlate-exception collection. .. seealso:: :meth:`_expression.ScalarSelect.correlate` :ref:`tutorial_scalar_subquery` - in the 2.0 tutorial :ref:`correlated_subqueries` - in the 1.x tutorial """ self.element = self.element.correlate_except(*fromclauses) class Exists(UnaryExpression): """Represent an ``EXISTS`` clause. See :func:`_sql.exists` for a description of usage. """ _from_objects = [] inherit_cache = True def __init__(self, *args, **kwargs): """Construct a new :class:`_expression.Exists` construct. The :func:`_sql.exists` can be invoked by itself to produce an :class:`_sql.Exists` construct, which will accept simple WHERE criteria:: exists_criteria = exists().where(table1.c.col1 == table2.c.col2) However, for greater flexibility in constructing the SELECT, an existing :class:`_sql.Select` construct may be converted to an :class:`_sql.Exists`, most conveniently by making use of the :meth:`_sql.SelectBase.exists` method:: exists_criteria = ( select(table2.c.col2). where(table1.c.col1 == table2.c.col2). exists() ) The EXISTS criteria is then used inside of an enclosing SELECT:: stmt = select(table1.c.col1).where(exists_criteria) The above statement will then be of the form:: SELECT col1 FROM table1 WHERE EXISTS (SELECT table2.col2 FROM table2 WHERE table2.col2 = table1.col1) .. seealso:: :ref:`tutorial_exists` - in the :term:`2.0 style` tutorial. """ # noqa E501 if args and isinstance(args[0], (SelectBase, ScalarSelect)): s = args[0] else: if not args: args = (literal_column("*"),) s = Select._create(*args, **kwargs).scalar_subquery() UnaryExpression.__init__( self, s, operator=operators.exists, type_=type_api.BOOLEANTYPE, wraps_column_expression=True, ) def _regroup(self, fn): element = self.element._ungroup() element = fn(element) return element.self_group(against=operators.exists) @util.deprecated_params( whereclause=( "2.0", "The :paramref:`_sql.Exists.select().whereclause` parameter " "is deprecated and will be removed in version 2.0. " "Please make use " "of the :meth:`.Select.where` " "method to add WHERE criteria to the SELECT statement.", ), kwargs=( "2.0", "The :meth:`_sql.Exists.select` method will no longer accept " "keyword arguments in version 2.0. " "Please use generative methods from the " ":class:`_sql.Select` construct in order to apply additional " "modifications.", ), ) def select(self, whereclause=None, **kwargs): r"""Return a SELECT of this :class:`_expression.Exists`. e.g.:: stmt = exists(some_table.c.id).where(some_table.c.id == 5).select() This will produce a statement resembling:: SELECT EXISTS (SELECT id FROM some_table WHERE some_table = :param) AS anon_1 :param whereclause: a WHERE clause, equivalent to calling the :meth:`_sql.Select.where` method. :param **kwargs: additional keyword arguments are passed to the legacy constructor for :class:`_sql.Select` described at :meth:`_sql.Select.create_legacy_select`. .. seealso:: :func:`_expression.select` - general purpose method which allows for arbitrary column lists. """ # noqa if whereclause is not None: kwargs["whereclause"] = whereclause return Select._create_select_from_fromclause(self, [self], **kwargs) def correlate(self, *fromclause): """Apply correlation to the subquery noted by this :class:`_sql.Exists`. .. seealso:: :meth:`_sql.ScalarSelect.correlate` """ e = self._clone() e.element = self._regroup( lambda element: element.correlate(*fromclause) ) return e def correlate_except(self, *fromclause): """Apply correlation to the subquery noted by this :class:`_sql.Exists`. .. seealso:: :meth:`_sql.ScalarSelect.correlate_except` """ e = self._clone() e.element = self._regroup( lambda element: element.correlate_except(*fromclause) ) return e def select_from(self, *froms): """Return a new :class:`_expression.Exists` construct, applying the given expression to the :meth:`_expression.Select.select_from` method of the select statement contained. .. note:: it is typically preferable to build a :class:`_sql.Select` statement first, including the desired WHERE clause, then use the :meth:`_sql.SelectBase.exists` method to produce an :class:`_sql.Exists` object at once. """ e = self._clone() e.element = self._regroup(lambda element: element.select_from(*froms)) return e def where(self, clause): """Return a new :func:`_expression.exists` construct with the given expression added to its WHERE clause, joined to the existing clause via AND, if any. .. note:: it is typically preferable to build a :class:`_sql.Select` statement first, including the desired WHERE clause, then use the :meth:`_sql.SelectBase.exists` method to produce an :class:`_sql.Exists` object at once. """ e = self._clone() e.element = self._regroup(lambda element: element.where(clause)) return e class TextualSelect(SelectBase): """Wrap a :class:`_expression.TextClause` construct within a :class:`_expression.SelectBase` interface. This allows the :class:`_expression.TextClause` object to gain a ``.c`` collection and other FROM-like capabilities such as :meth:`_expression.FromClause.alias`, :meth:`_expression.SelectBase.cte`, etc. The :class:`_expression.TextualSelect` construct is produced via the :meth:`_expression.TextClause.columns` method - see that method for details. .. versionchanged:: 1.4 the :class:`_expression.TextualSelect` class was renamed from ``TextAsFrom``, to more correctly suit its role as a SELECT-oriented object and not a FROM clause. .. seealso:: :func:`_expression.text` :meth:`_expression.TextClause.columns` - primary creation interface. """ __visit_name__ = "textual_select" _label_style = LABEL_STYLE_NONE _traverse_internals = [ ("element", InternalTraversal.dp_clauseelement), ("column_args", InternalTraversal.dp_clauseelement_list), ] + SupportsCloneAnnotations._clone_annotations_traverse_internals _is_textual = True is_text = True is_select = True def __init__(self, text, columns, positional=False): self.element = text # convert for ORM attributes->columns, etc self.column_args = [ coercions.expect(roles.ColumnsClauseRole, c) for c in columns ] self.positional = positional @HasMemoized.memoized_attribute def selected_columns(self): """A :class:`_expression.ColumnCollection` representing the columns that this SELECT statement or similar construct returns in its result set, not including :class:`_sql.TextClause` constructs. This collection differs from the :attr:`_expression.FromClause.columns` collection of a :class:`_expression.FromClause` in that the columns within this collection cannot be directly nested inside another SELECT statement; a subquery must be applied first which provides for the necessary parenthesization required by SQL. For a :class:`_expression.TextualSelect` construct, the collection contains the :class:`_expression.ColumnElement` objects that were passed to the constructor, typically via the :meth:`_expression.TextClause.columns` method. .. versionadded:: 1.4 """ return ColumnCollection( (c.key, c) for c in self.column_args ).as_immutable() @property def _all_selected_columns(self): return self.column_args def _set_label_style(self, style): return self def _ensure_disambiguated_names(self): return self @property def _bind(self): return self.element._bind @_generative def bindparams(self, *binds, **bind_as_values): self.element = self.element.bindparams(*binds, **bind_as_values) def _generate_fromclause_column_proxies(self, fromclause): fromclause._columns._populate_separate_keys( c._make_proxy(fromclause) for c in self.column_args ) def _scalar_type(self): return self.column_args[0].type TextAsFrom = TextualSelect """Backwards compatibility with the previous name""" class AnnotatedFromClause(Annotated): def __init__(self, element, values): # force FromClause to generate their internal # collections into __dict__ element.c Annotated.__init__(self, element, values)