# sql/base.py # Copyright (C) 2005-2021 the SQLAlchemy authors and contributors # # # This module is part of SQLAlchemy and is released under # the MIT License: http://www.opensource.org/licenses/mit-license.php """Foundational utilities common to many sql modules. """ import itertools import operator import re from . import roles from . import visitors from .traversals import HasCacheKey # noqa from .traversals import HasCopyInternals # noqa from .traversals import MemoizedHasCacheKey # noqa from .visitors import ClauseVisitor from .visitors import ExtendedInternalTraversal from .visitors import InternalTraversal from .. import exc from .. import util from ..util import HasMemoized from ..util import hybridmethod coercions = None elements = None type_api = None PARSE_AUTOCOMMIT = util.symbol("PARSE_AUTOCOMMIT") NO_ARG = util.symbol("NO_ARG") class Immutable(object): """mark a ClauseElement as 'immutable' when expressions are cloned.""" def unique_params(self, *optionaldict, **kwargs): raise NotImplementedError("Immutable objects do not support copying") def params(self, *optionaldict, **kwargs): raise NotImplementedError("Immutable objects do not support copying") def _clone(self, **kw): return self def _copy_internals(self, **kw): pass class SingletonConstant(Immutable): """Represent SQL constants like NULL, TRUE, FALSE""" def __new__(cls, *arg, **kw): return cls._singleton @classmethod def _create_singleton(cls): obj = object.__new__(cls) obj.__init__() cls._singleton = obj # don't proxy singletons. this means that a SingletonConstant # will never be a "corresponding column" in a statement; the constant # can be named directly and as it is often/usually compared against using # "IS", it can't be adapted to a subquery column in any case. # see :ticket:`6259`. proxy_set = frozenset() def _from_objects(*elements): return itertools.chain.from_iterable( [element._from_objects for element in elements] ) def _select_iterables(elements): """expand tables into individual columns in the given list of column expressions. """ return itertools.chain.from_iterable( [c._select_iterable for c in elements] ) def _generative(fn): """non-caching _generative() decorator. This is basically the legacy decorator that copies the object and runs a method on the new copy. """ @util.decorator def _generative(fn, self, *args, **kw): """Mark a method as generative.""" self = self._generate() x = fn(self, *args, **kw) assert x is None, "generative methods must have no return value" return self decorated = _generative(fn) decorated.non_generative = fn return decorated def _exclusive_against(*names, **kw): msgs = kw.pop("msgs", {}) defaults = kw.pop("defaults", {}) getters = [ (name, operator.attrgetter(name), defaults.get(name, None)) for name in names ] @util.decorator def check(fn, self, *args, **kw): for name, getter, default_ in getters: if getter(self) is not default_: msg = msgs.get( name, "Method %s() has already been invoked on this %s construct" % (fn.__name__, self.__class__), ) raise exc.InvalidRequestError(msg) return fn(self, *args, **kw) return check def _clone(element, **kw): return element._clone(**kw) def _expand_cloned(elements): """expand the given set of ClauseElements to be the set of all 'cloned' predecessors. """ return itertools.chain(*[x._cloned_set for x in elements]) def _cloned_intersection(a, b): """return the intersection of sets a and b, counting any overlap between 'cloned' predecessors. The returned set is in terms of the entities present within 'a'. """ all_overlap = set(_expand_cloned(a)).intersection(_expand_cloned(b)) return set( elem for elem in a if all_overlap.intersection(elem._cloned_set) ) def _cloned_difference(a, b): all_overlap = set(_expand_cloned(a)).intersection(_expand_cloned(b)) return set( elem for elem in a if not all_overlap.intersection(elem._cloned_set) ) class _DialectArgView(util.collections_abc.MutableMapping): """A dictionary view of dialect-level arguments in the form _. """ def __init__(self, obj): self.obj = obj def _key(self, key): try: dialect, value_key = key.split("_", 1) except ValueError as err: util.raise_(KeyError(key), replace_context=err) else: return dialect, value_key def __getitem__(self, key): dialect, value_key = self._key(key) try: opt = self.obj.dialect_options[dialect] except exc.NoSuchModuleError as err: util.raise_(KeyError(key), replace_context=err) else: return opt[value_key] def __setitem__(self, key, value): try: dialect, value_key = self._key(key) except KeyError as err: util.raise_( exc.ArgumentError( "Keys must be of the form _" ), replace_context=err, ) else: self.obj.dialect_options[dialect][value_key] = value def __delitem__(self, key): dialect, value_key = self._key(key) del self.obj.dialect_options[dialect][value_key] def __len__(self): return sum( len(args._non_defaults) for args in self.obj.dialect_options.values() ) def __iter__(self): return ( "%s_%s" % (dialect_name, value_name) for dialect_name in self.obj.dialect_options for value_name in self.obj.dialect_options[ dialect_name ]._non_defaults ) class _DialectArgDict(util.collections_abc.MutableMapping): """A dictionary view of dialect-level arguments for a specific dialect. Maintains a separate collection of user-specified arguments and dialect-specified default arguments. """ def __init__(self): self._non_defaults = {} self._defaults = {} def __len__(self): return len(set(self._non_defaults).union(self._defaults)) def __iter__(self): return iter(set(self._non_defaults).union(self._defaults)) def __getitem__(self, key): if key in self._non_defaults: return self._non_defaults[key] else: return self._defaults[key] def __setitem__(self, key, value): self._non_defaults[key] = value def __delitem__(self, key): del self._non_defaults[key] @util.preload_module("sqlalchemy.dialects") def _kw_reg_for_dialect(dialect_name): dialect_cls = util.preloaded.dialects.registry.load(dialect_name) if dialect_cls.construct_arguments is None: return None return dict(dialect_cls.construct_arguments) class DialectKWArgs(object): """Establish the ability for a class to have dialect-specific arguments with defaults and constructor validation. The :class:`.DialectKWArgs` interacts with the :attr:`.DefaultDialect.construct_arguments` present on a dialect. .. seealso:: :attr:`.DefaultDialect.construct_arguments` """ _dialect_kwargs_traverse_internals = [ ("dialect_options", InternalTraversal.dp_dialect_options) ] @classmethod def argument_for(cls, dialect_name, argument_name, default): """Add a new kind of dialect-specific keyword argument for this class. E.g.:: Index.argument_for("mydialect", "length", None) some_index = Index('a', 'b', mydialect_length=5) The :meth:`.DialectKWArgs.argument_for` method is a per-argument way adding extra arguments to the :attr:`.DefaultDialect.construct_arguments` dictionary. This dictionary provides a list of argument names accepted by various schema-level constructs on behalf of a dialect. New dialects should typically specify this dictionary all at once as a data member of the dialect class. The use case for ad-hoc addition of argument names is typically for end-user code that is also using a custom compilation scheme which consumes the additional arguments. :param dialect_name: name of a dialect. The dialect must be locatable, else a :class:`.NoSuchModuleError` is raised. The dialect must also include an existing :attr:`.DefaultDialect.construct_arguments` collection, indicating that it participates in the keyword-argument validation and default system, else :class:`.ArgumentError` is raised. If the dialect does not include this collection, then any keyword argument can be specified on behalf of this dialect already. All dialects packaged within SQLAlchemy include this collection, however for third party dialects, support may vary. :param argument_name: name of the parameter. :param default: default value of the parameter. .. versionadded:: 0.9.4 """ construct_arg_dictionary = DialectKWArgs._kw_registry[dialect_name] if construct_arg_dictionary is None: raise exc.ArgumentError( "Dialect '%s' does have keyword-argument " "validation and defaults enabled configured" % dialect_name ) if cls not in construct_arg_dictionary: construct_arg_dictionary[cls] = {} construct_arg_dictionary[cls][argument_name] = default @util.memoized_property def dialect_kwargs(self): """A collection of keyword arguments specified as dialect-specific options to this construct. The arguments are present here in their original ``_`` format. Only arguments that were actually passed are included; unlike the :attr:`.DialectKWArgs.dialect_options` collection, which contains all options known by this dialect including defaults. The collection is also writable; keys are accepted of the form ``_`` where the value will be assembled into the list of options. .. versionadded:: 0.9.2 .. versionchanged:: 0.9.4 The :attr:`.DialectKWArgs.dialect_kwargs` collection is now writable. .. seealso:: :attr:`.DialectKWArgs.dialect_options` - nested dictionary form """ return _DialectArgView(self) @property def kwargs(self): """A synonym for :attr:`.DialectKWArgs.dialect_kwargs`.""" return self.dialect_kwargs _kw_registry = util.PopulateDict(_kw_reg_for_dialect) def _kw_reg_for_dialect_cls(self, dialect_name): construct_arg_dictionary = DialectKWArgs._kw_registry[dialect_name] d = _DialectArgDict() if construct_arg_dictionary is None: d._defaults.update({"*": None}) else: for cls in reversed(self.__class__.__mro__): if cls in construct_arg_dictionary: d._defaults.update(construct_arg_dictionary[cls]) return d @util.memoized_property def dialect_options(self): """A collection of keyword arguments specified as dialect-specific options to this construct. This is a two-level nested registry, keyed to ```` and ````. For example, the ``postgresql_where`` argument would be locatable as:: arg = my_object.dialect_options['postgresql']['where'] .. versionadded:: 0.9.2 .. seealso:: :attr:`.DialectKWArgs.dialect_kwargs` - flat dictionary form """ return util.PopulateDict( util.portable_instancemethod(self._kw_reg_for_dialect_cls) ) def _validate_dialect_kwargs(self, kwargs): # validate remaining kwargs that they all specify DB prefixes if not kwargs: return for k in kwargs: m = re.match("^(.+?)_(.+)$", k) if not m: raise TypeError( "Additional arguments should be " "named _, got '%s'" % k ) dialect_name, arg_name = m.group(1, 2) try: construct_arg_dictionary = self.dialect_options[dialect_name] except exc.NoSuchModuleError: util.warn( "Can't validate argument %r; can't " "locate any SQLAlchemy dialect named %r" % (k, dialect_name) ) self.dialect_options[dialect_name] = d = _DialectArgDict() d._defaults.update({"*": None}) d._non_defaults[arg_name] = kwargs[k] else: if ( "*" not in construct_arg_dictionary and arg_name not in construct_arg_dictionary ): raise exc.ArgumentError( "Argument %r is not accepted by " "dialect %r on behalf of %r" % (k, dialect_name, self.__class__) ) else: construct_arg_dictionary[arg_name] = kwargs[k] class CompileState(object): """Produces additional object state necessary for a statement to be compiled. the :class:`.CompileState` class is at the base of classes that assemble state for a particular statement object that is then used by the compiler. This process is essentially an extension of the process that the SQLCompiler.visit_XYZ() method takes, however there is an emphasis on converting raw user intent into more organized structures rather than producing string output. The top-level :class:`.CompileState` for the statement being executed is also accessible when the execution context works with invoking the statement and collecting results. The production of :class:`.CompileState` is specific to the compiler, such as within the :meth:`.SQLCompiler.visit_insert`, :meth:`.SQLCompiler.visit_select` etc. methods. These methods are also responsible for associating the :class:`.CompileState` with the :class:`.SQLCompiler` itself, if the statement is the "toplevel" statement, i.e. the outermost SQL statement that's actually being executed. There can be other :class:`.CompileState` objects that are not the toplevel, such as when a SELECT subquery or CTE-nested INSERT/UPDATE/DELETE is generated. .. versionadded:: 1.4 """ __slots__ = ("statement",) plugins = {} @classmethod def create_for_statement(cls, statement, compiler, **kw): # factory construction. if statement._propagate_attrs: plugin_name = statement._propagate_attrs.get( "compile_state_plugin", "default" ) klass = cls.plugins.get( (plugin_name, statement._effective_plugin_target), None ) if klass is None: klass = cls.plugins[ ("default", statement._effective_plugin_target) ] else: klass = cls.plugins[ ("default", statement._effective_plugin_target) ] if klass is cls: return cls(statement, compiler, **kw) else: return klass.create_for_statement(statement, compiler, **kw) def __init__(self, statement, compiler, **kw): self.statement = statement @classmethod def get_plugin_class(cls, statement): plugin_name = statement._propagate_attrs.get( "compile_state_plugin", "default" ) try: return cls.plugins[ (plugin_name, statement._effective_plugin_target) ] except KeyError: return None @classmethod def _get_plugin_class_for_plugin(cls, statement, plugin_name): try: return cls.plugins[ (plugin_name, statement._effective_plugin_target) ] except KeyError: return None @classmethod def plugin_for(cls, plugin_name, visit_name): def decorate(cls_to_decorate): cls.plugins[(plugin_name, visit_name)] = cls_to_decorate return cls_to_decorate return decorate class Generative(HasMemoized): """Provide a method-chaining pattern in conjunction with the @_generative decorator.""" def _generate(self): skip = self._memoized_keys cls = self.__class__ s = cls.__new__(cls) if skip: s.__dict__ = { k: v for k, v in self.__dict__.items() if k not in skip } else: s.__dict__ = self.__dict__.copy() return s class InPlaceGenerative(HasMemoized): """Provide a method-chaining pattern in conjunction with the @_generative decorator that mutates in place.""" def _generate(self): skip = self._memoized_keys for k in skip: self.__dict__.pop(k, None) return self class HasCompileState(Generative): """A class that has a :class:`.CompileState` associated with it.""" _compile_state_plugin = None _attributes = util.immutabledict() _compile_state_factory = CompileState.create_for_statement class _MetaOptions(type): """metaclass for the Options class.""" def __init__(cls, classname, bases, dict_): cls._cache_attrs = tuple( sorted( d for d in dict_ if not d.startswith("__") and d not in ("_cache_key_traversal",) ) ) type.__init__(cls, classname, bases, dict_) def __add__(self, other): o1 = self() if set(other).difference(self._cache_attrs): raise TypeError( "dictionary contains attributes not covered by " "Options class %s: %r" % (self, set(other).difference(self._cache_attrs)) ) o1.__dict__.update(other) return o1 class Options(util.with_metaclass(_MetaOptions)): """A cacheable option dictionary with defaults.""" def __init__(self, **kw): self.__dict__.update(kw) def __add__(self, other): o1 = self.__class__.__new__(self.__class__) o1.__dict__.update(self.__dict__) if set(other).difference(self._cache_attrs): raise TypeError( "dictionary contains attributes not covered by " "Options class %s: %r" % (self, set(other).difference(self._cache_attrs)) ) o1.__dict__.update(other) return o1 def __eq__(self, other): # TODO: very inefficient. This is used only in test suites # right now. for a, b in util.zip_longest(self._cache_attrs, other._cache_attrs): if getattr(self, a) != getattr(other, b): return False return True def __repr__(self): # TODO: fairly inefficient, used only in debugging right now. return "%s(%s)" % ( self.__class__.__name__, ", ".join( "%s=%r" % (k, self.__dict__[k]) for k in self._cache_attrs if k in self.__dict__ ), ) @classmethod def isinstance(cls, klass): return issubclass(cls, klass) @hybridmethod def add_to_element(self, name, value): return self + {name: getattr(self, name) + value} @hybridmethod def _state_dict(self): return self.__dict__ _state_dict_const = util.immutabledict() @_state_dict.classlevel def _state_dict(cls): return cls._state_dict_const @classmethod def safe_merge(cls, other): d = other._state_dict() # only support a merge with another object of our class # and which does not have attrs that we don't. otherwise # we risk having state that might not be part of our cache # key strategy if ( cls is not other.__class__ and other._cache_attrs and set(other._cache_attrs).difference(cls._cache_attrs) ): raise TypeError( "other element %r is not empty, is not of type %s, " "and contains attributes not covered here %r" % ( other, cls, set(other._cache_attrs).difference(cls._cache_attrs), ) ) return cls + d @classmethod def from_execution_options( cls, key, attrs, exec_options, statement_exec_options ): """process Options argument in terms of execution options. e.g.:: ( load_options, execution_options, ) = QueryContext.default_load_options.from_execution_options( "_sa_orm_load_options", { "populate_existing", "autoflush", "yield_per" }, execution_options, statement._execution_options, ) get back the Options and refresh "_sa_orm_load_options" in the exec options dict w/ the Options as well """ # common case is that no options we are looking for are # in either dictionary, so cancel for that first check_argnames = attrs.intersection( set(exec_options).union(statement_exec_options) ) existing_options = exec_options.get(key, cls) if check_argnames: result = {} for argname in check_argnames: local = "_" + argname if argname in exec_options: result[local] = exec_options[argname] elif argname in statement_exec_options: result[local] = statement_exec_options[argname] new_options = existing_options + result exec_options = util.immutabledict().merge_with( exec_options, {key: new_options} ) return new_options, exec_options else: return existing_options, exec_options class CacheableOptions(Options, HasCacheKey): @hybridmethod def _gen_cache_key(self, anon_map, bindparams): return HasCacheKey._gen_cache_key(self, anon_map, bindparams) @_gen_cache_key.classlevel def _gen_cache_key(cls, anon_map, bindparams): return (cls, ()) @hybridmethod def _generate_cache_key(self): return HasCacheKey._generate_cache_key_for_object(self) class ExecutableOption(HasCopyInternals, HasCacheKey): _annotations = util.EMPTY_DICT __visit_name__ = "executable_option" def _clone(self, **kw): """Create a shallow copy of this ExecutableOption.""" c = self.__class__.__new__(self.__class__) c.__dict__ = dict(self.__dict__) return c class Executable(roles.StatementRole, Generative): """Mark a :class:`_expression.ClauseElement` as supporting execution. :class:`.Executable` is a superclass for all "statement" types of objects, including :func:`select`, :func:`delete`, :func:`update`, :func:`insert`, :func:`text`. """ supports_execution = True _execution_options = util.immutabledict() _bind = None _with_options = () _with_context_options = () _executable_traverse_internals = [ ("_with_options", InternalTraversal.dp_executable_options), ( "_with_context_options", ExtendedInternalTraversal.dp_with_context_options, ), ("_propagate_attrs", ExtendedInternalTraversal.dp_propagate_attrs), ] is_select = False is_update = False is_insert = False is_text = False is_delete = False is_dml = False @property def _effective_plugin_target(self): return self.__visit_name__ @_generative def options(self, *options): """Apply options to this statement. In the general sense, options are any kind of Python object that can be interpreted by the SQL compiler for the statement. These options can be consumed by specific dialects or specific kinds of compilers. The most commonly known kind of option are the ORM level options that apply "eager load" and other loading behaviors to an ORM query. However, options can theoretically be used for many other purposes. For background on specific kinds of options for specific kinds of statements, refer to the documentation for those option objects. .. versionchanged:: 1.4 - added :meth:`.Generative.options` to Core statement objects towards the goal of allowing unified Core / ORM querying capabilities. .. seealso:: :ref:`deferred_options` - refers to options specific to the usage of ORM queries :ref:`relationship_loader_options` - refers to options specific to the usage of ORM queries """ self._with_options += tuple( coercions.expect(roles.HasCacheKeyRole, opt) for opt in options ) @_generative def _set_compile_options(self, compile_options): """Assign the compile options to a new value. :param compile_options: appropriate CacheableOptions structure """ self._compile_options = compile_options @_generative def _update_compile_options(self, options): """update the _compile_options with new keys.""" self._compile_options += options @_generative def _add_context_option(self, callable_, cache_args): """Add a context option to this statement. These are callable functions that will be given the CompileState object upon compilation. A second argument cache_args is required, which will be combined with the ``__code__`` identity of the function itself in order to produce a cache key. """ self._with_context_options += ((callable_, cache_args),) @_generative def execution_options(self, **kw): """Set non-SQL options for the statement which take effect during execution. Execution options can be set on a per-statement or per :class:`_engine.Connection` basis. Additionally, the :class:`_engine.Engine` and ORM :class:`~.orm.query.Query` objects provide access to execution options which they in turn configure upon connections. The :meth:`execution_options` method is generative. A new instance of this statement is returned that contains the options:: statement = select(table.c.x, table.c.y) statement = statement.execution_options(autocommit=True) Note that only a subset of possible execution options can be applied to a statement - these include "autocommit" and "stream_results", but not "isolation_level" or "compiled_cache". See :meth:`_engine.Connection.execution_options` for a full list of possible options. .. seealso:: :meth:`_engine.Connection.execution_options` :meth:`_query.Query.execution_options` :meth:`.Executable.get_execution_options` """ if "isolation_level" in kw: raise exc.ArgumentError( "'isolation_level' execution option may only be specified " "on Connection.execution_options(), or " "per-engine using the isolation_level " "argument to create_engine()." ) if "compiled_cache" in kw: raise exc.ArgumentError( "'compiled_cache' execution option may only be specified " "on Connection.execution_options(), not per statement." ) self._execution_options = self._execution_options.union(kw) def get_execution_options(self): """Get the non-SQL options which will take effect during execution. .. versionadded:: 1.3 .. seealso:: :meth:`.Executable.execution_options` """ return self._execution_options @util.deprecated_20( ":meth:`.Executable.execute`", alternative="All statement execution in SQLAlchemy 2.0 is performed " "by the :meth:`_engine.Connection.execute` method of " ":class:`_engine.Connection`, " "or in the ORM by the :meth:`.Session.execute` method of " ":class:`.Session`.", ) def execute(self, *multiparams, **params): """Compile and execute this :class:`.Executable`.""" e = self.bind if e is None: label = ( getattr(self, "description", None) or self.__class__.__name__ ) msg = ( "This %s is not directly bound to a Connection or Engine. " "Use the .execute() method of a Connection or Engine " "to execute this construct." % label ) raise exc.UnboundExecutionError(msg) return e._execute_clauseelement( self, multiparams, params, util.immutabledict() ) @util.deprecated_20( ":meth:`.Executable.scalar`", alternative="Scalar execution in SQLAlchemy 2.0 is performed " "by the :meth:`_engine.Connection.scalar` method of " ":class:`_engine.Connection`, " "or in the ORM by the :meth:`.Session.scalar` method of " ":class:`.Session`.", ) def scalar(self, *multiparams, **params): """Compile and execute this :class:`.Executable`, returning the result's scalar representation. """ return self.execute(*multiparams, **params).scalar() @property @util.deprecated_20( ":attr:`.Executable.bind`", alternative="Bound metadata is being removed as of SQLAlchemy 2.0.", enable_warnings=False, ) def bind(self): """Returns the :class:`_engine.Engine` or :class:`_engine.Connection` to which this :class:`.Executable` is bound, or None if none found. This is a traversal which checks locally, then checks among the "from" clauses of associated objects until a bound engine or connection is found. """ if self._bind is not None: return self._bind for f in _from_objects(self): if f is self: continue engine = f.bind if engine is not None: return engine else: return None class prefix_anon_map(dict): """A map that creates new keys for missing key access. Considers keys of the form " " to produce new symbols "_", where "index" is an incrementing integer corresponding to . Inlines the approach taken by :class:`sqlalchemy.util.PopulateDict` which is otherwise usually used for this type of operation. """ def __missing__(self, key): (ident, derived) = key.split(" ", 1) anonymous_counter = self.get(derived, 1) self[derived] = anonymous_counter + 1 value = derived + "_" + str(anonymous_counter) self[key] = value return value class SchemaEventTarget(object): """Base class for elements that are the targets of :class:`.DDLEvents` events. This includes :class:`.SchemaItem` as well as :class:`.SchemaType`. """ def _set_parent(self, parent, **kw): """Associate with this SchemaEvent's parent object.""" def _set_parent_with_dispatch(self, parent, **kw): self.dispatch.before_parent_attach(self, parent) self._set_parent(parent, **kw) self.dispatch.after_parent_attach(self, parent) class SchemaVisitor(ClauseVisitor): """Define the visiting for ``SchemaItem`` objects.""" __traverse_options__ = {"schema_visitor": True} class ColumnCollection(object): """Collection of :class:`_expression.ColumnElement` instances, typically for :class:`_sql.FromClause` objects. The :class:`_sql.ColumnCollection` object is most commonly available as the :attr:`_schema.Table.c` or :attr:`_schema.Table.columns` collection on the :class:`_schema.Table` object, introduced at :ref:`metadata_tables_and_columns`. The :class:`_expression.ColumnCollection` has both mapping- and sequence- like behaviors. A :class:`_expression.ColumnCollection` usually stores :class:`_schema.Column` objects, which are then accessible both via mapping style access as well as attribute access style. To access :class:`_schema.Column` objects using ordinary attribute-style access, specify the name like any other object attribute, such as below a column named ``employee_name`` is accessed:: >>> employee_table.c.employee_name To access columns that have names with special characters or spaces, index-style access is used, such as below which illustrates a column named ``employee ' payment`` is accessed:: >>> employee_table.c["employee ' payment"] As the :class:`_sql.ColumnCollection` object provides a Python dictionary interface, common dictionary method names like :meth:`_sql.ColumnCollection.keys`, :meth:`_sql.ColumnCollection.values`, and :meth:`_sql.ColumnCollection.items` are available, which means that database columns that are keyed under these names also need to use indexed access:: >>> employee_table.c["values"] The name for which a :class:`_schema.Column` would be present is normally that of the :paramref:`_schema.Column.key` parameter. In some contexts, such as a :class:`_sql.Select` object that uses a label style set using the :meth:`_sql.Select.set_label_style` method, a column of a certain key may instead be represented under a particular label name such as ``tablename_columnname``:: >>> from sqlalchemy import select, column, table >>> from sqlalchemy import LABEL_STYLE_TABLENAME_PLUS_COL >>> t = table("t", column("c")) >>> stmt = select(t).set_label_style(LABEL_STYLE_TABLENAME_PLUS_COL) >>> subq = stmt.subquery() >>> subq.c.t_c :class:`.ColumnCollection` also indexes the columns in order and allows them to be accessible by their integer position:: >>> cc[0] Column('x', Integer(), table=None) >>> cc[1] Column('y', Integer(), table=None) .. versionadded:: 1.4 :class:`_expression.ColumnCollection` allows integer-based index access to the collection. Iterating the collection yields the column expressions in order:: >>> list(cc) [Column('x', Integer(), table=None), Column('y', Integer(), table=None)] The base :class:`_expression.ColumnCollection` object can store duplicates, which can mean either two columns with the same key, in which case the column returned by key access is **arbitrary**:: >>> x1, x2 = Column('x', Integer), Column('x', Integer) >>> cc = ColumnCollection(columns=[(x1.name, x1), (x2.name, x2)]) >>> list(cc) [Column('x', Integer(), table=None), Column('x', Integer(), table=None)] >>> cc['x'] is x1 False >>> cc['x'] is x2 True Or it can also mean the same column multiple times. These cases are supported as :class:`_expression.ColumnCollection` is used to represent the columns in a SELECT statement which may include duplicates. A special subclass :class:`.DedupeColumnCollection` exists which instead maintains SQLAlchemy's older behavior of not allowing duplicates; this collection is used for schema level objects like :class:`_schema.Table` and :class:`.PrimaryKeyConstraint` where this deduping is helpful. The :class:`.DedupeColumnCollection` class also has additional mutation methods as the schema constructs have more use cases that require removal and replacement of columns. .. versionchanged:: 1.4 :class:`_expression.ColumnCollection` now stores duplicate column keys as well as the same column in multiple positions. The :class:`.DedupeColumnCollection` class is added to maintain the former behavior in those cases where deduplication as well as additional replace/remove operations are needed. """ __slots__ = "_collection", "_index", "_colset" def __init__(self, columns=None): object.__setattr__(self, "_colset", set()) object.__setattr__(self, "_index", {}) object.__setattr__(self, "_collection", []) if columns: self._initial_populate(columns) def _initial_populate(self, iter_): self._populate_separate_keys(iter_) @property def _all_columns(self): return [col for (k, col) in self._collection] def keys(self): """Return a sequence of string key names for all columns in this collection.""" return [k for (k, col) in self._collection] def values(self): """Return a sequence of :class:`_sql.ColumnClause` or :class:`_schema.Column` objects for all columns in this collection.""" return [col for (k, col) in self._collection] def items(self): """Return a sequence of (key, column) tuples for all columns in this collection each consisting of a string key name and a :class:`_sql.ColumnClause` or :class:`_schema.Column` object. """ return list(self._collection) def __bool__(self): return bool(self._collection) def __len__(self): return len(self._collection) def __iter__(self): # turn to a list first to maintain over a course of changes return iter([col for k, col in self._collection]) def __getitem__(self, key): try: return self._index[key] except KeyError as err: if isinstance(key, util.int_types): util.raise_(IndexError(key), replace_context=err) else: raise def __getattr__(self, key): try: return self._index[key] except KeyError as err: util.raise_(AttributeError(key), replace_context=err) def __contains__(self, key): if key not in self._index: if not isinstance(key, util.string_types): raise exc.ArgumentError( "__contains__ requires a string argument" ) return False else: return True def compare(self, other): """Compare this :class:`_expression.ColumnCollection` to another based on the names of the keys""" for l, r in util.zip_longest(self, other): if l is not r: return False else: return True def __eq__(self, other): return self.compare(other) def get(self, key, default=None): """Get a :class:`_sql.ColumnClause` or :class:`_schema.Column` object based on a string key name from this :class:`_expression.ColumnCollection`.""" if key in self._index: return self._index[key] else: return default def __str__(self): return "%s(%s)" % ( self.__class__.__name__, ", ".join(str(c) for c in self), ) def __setitem__(self, key, value): raise NotImplementedError() def __delitem__(self, key): raise NotImplementedError() def __setattr__(self, key, obj): raise NotImplementedError() def clear(self): """Dictionary clear() is not implemented for :class:`_sql.ColumnCollection`.""" raise NotImplementedError() def remove(self, column): """Dictionary remove() is not implemented for :class:`_sql.ColumnCollection`.""" raise NotImplementedError() def update(self, iter_): """Dictionary update() is not implemented for :class:`_sql.ColumnCollection`.""" raise NotImplementedError() __hash__ = None def _populate_separate_keys(self, iter_): """populate from an iterator of (key, column)""" cols = list(iter_) self._collection[:] = cols self._colset.update(c for k, c in self._collection) self._index.update( (idx, c) for idx, (k, c) in enumerate(self._collection) ) self._index.update({k: col for k, col in reversed(self._collection)}) def add(self, column, key=None): """Add a column to this :class:`_sql.ColumnCollection`. .. note:: This method is **not normally used by user-facing code**, as the :class:`_sql.ColumnCollection` is usually part of an existing object such as a :class:`_schema.Table`. To add a :class:`_schema.Column` to an existing :class:`_schema.Table` object, use the :meth:`_schema.Table.append_column` method. """ if key is None: key = column.key l = len(self._collection) self._collection.append((key, column)) self._colset.add(column) self._index[l] = column if key not in self._index: self._index[key] = column def __getstate__(self): return {"_collection": self._collection, "_index": self._index} def __setstate__(self, state): object.__setattr__(self, "_index", state["_index"]) object.__setattr__(self, "_collection", state["_collection"]) object.__setattr__( self, "_colset", {col for k, col in self._collection} ) def contains_column(self, col): """Checks if a column object exists in this collection""" if col not in self._colset: if isinstance(col, util.string_types): raise exc.ArgumentError( "contains_column cannot be used with string arguments. " "Use ``col_name in table.c`` instead." ) return False else: return True def as_immutable(self): """Return an "immutable" form of this :class:`_sql.ColumnCollection`.""" return ImmutableColumnCollection(self) def corresponding_column(self, column, require_embedded=False): """Given a :class:`_expression.ColumnElement`, return the exported :class:`_expression.ColumnElement` object from this :class:`_expression.ColumnCollection` which corresponds to that original :class:`_expression.ColumnElement` via a common ancestor column. :param column: the target :class:`_expression.ColumnElement` to be matched. :param require_embedded: only return corresponding columns for the given :class:`_expression.ColumnElement`, if the given :class:`_expression.ColumnElement` is actually present within a sub-element of this :class:`_expression.Selectable`. Normally the column will match if it merely shares a common ancestor with one of the exported columns of this :class:`_expression.Selectable`. .. seealso:: :meth:`_expression.Selectable.corresponding_column` - invokes this method against the collection returned by :attr:`_expression.Selectable.exported_columns`. .. versionchanged:: 1.4 the implementation for ``corresponding_column`` was moved onto the :class:`_expression.ColumnCollection` itself. """ def embedded(expanded_proxy_set, target_set): for t in target_set.difference(expanded_proxy_set): if not set(_expand_cloned([t])).intersection( expanded_proxy_set ): return False return True # don't dig around if the column is locally present if column in self._colset: return column col, intersect = None, None target_set = column.proxy_set cols = [c for (k, c) in self._collection] for c in cols: expanded_proxy_set = set(_expand_cloned(c.proxy_set)) i = target_set.intersection(expanded_proxy_set) if i and ( not require_embedded or embedded(expanded_proxy_set, target_set) ): if col is None: # no corresponding column yet, pick this one. col, intersect = c, i elif len(i) > len(intersect): # 'c' has a larger field of correspondence than # 'col'. i.e. selectable.c.a1_x->a1.c.x->table.c.x # matches a1.c.x->table.c.x better than # selectable.c.x->table.c.x does. col, intersect = c, i elif i == intersect: # they have the same field of correspondence. see # which proxy_set has fewer columns in it, which # indicates a closer relationship with the root # column. Also take into account the "weight" # attribute which CompoundSelect() uses to give # higher precedence to columns based on vertical # position in the compound statement, and discard # columns that have no reference to the target # column (also occurs with CompoundSelect) col_distance = util.reduce( operator.add, [ sc._annotations.get("weight", 1) for sc in col._uncached_proxy_set() if sc.shares_lineage(column) ], ) c_distance = util.reduce( operator.add, [ sc._annotations.get("weight", 1) for sc in c._uncached_proxy_set() if sc.shares_lineage(column) ], ) if c_distance < col_distance: col, intersect = c, i return col class DedupeColumnCollection(ColumnCollection): """A :class:`_expression.ColumnCollection` that maintains deduplicating behavior. This is useful by schema level objects such as :class:`_schema.Table` and :class:`.PrimaryKeyConstraint`. The collection includes more sophisticated mutator methods as well to suit schema objects which require mutable column collections. .. versionadded:: 1.4 """ def add(self, column, key=None): if key is not None and column.key != key: raise exc.ArgumentError( "DedupeColumnCollection requires columns be under " "the same key as their .key" ) key = column.key if key is None: raise exc.ArgumentError( "Can't add unnamed column to column collection" ) if key in self._index: existing = self._index[key] if existing is column: return self.replace(column) # pop out memoized proxy_set as this # operation may very well be occurring # in a _make_proxy operation util.memoized_property.reset(column, "proxy_set") else: l = len(self._collection) self._collection.append((key, column)) self._colset.add(column) self._index[l] = column self._index[key] = column def _populate_separate_keys(self, iter_): """populate from an iterator of (key, column)""" cols = list(iter_) replace_col = [] for k, col in cols: if col.key != k: raise exc.ArgumentError( "DedupeColumnCollection requires columns be under " "the same key as their .key" ) if col.name in self._index and col.key != col.name: replace_col.append(col) elif col.key in self._index: replace_col.append(col) else: self._index[k] = col self._collection.append((k, col)) self._colset.update(c for (k, c) in self._collection) self._index.update( (idx, c) for idx, (k, c) in enumerate(self._collection) ) for col in replace_col: self.replace(col) def extend(self, iter_): self._populate_separate_keys((col.key, col) for col in iter_) def remove(self, column): if column not in self._colset: raise ValueError( "Can't remove column %r; column is not in this collection" % column ) del self._index[column.key] self._colset.remove(column) self._collection[:] = [ (k, c) for (k, c) in self._collection if c is not column ] self._index.update( {idx: col for idx, (k, col) in enumerate(self._collection)} ) # delete higher index del self._index[len(self._collection)] def replace(self, column): """add the given column to this collection, removing unaliased versions of this column as well as existing columns with the same key. e.g.:: t = Table('sometable', metadata, Column('col1', Integer)) t.columns.replace(Column('col1', Integer, key='columnone')) will remove the original 'col1' from the collection, and add the new column under the name 'columnname'. Used by schema.Column to override columns during table reflection. """ remove_col = set() # remove up to two columns based on matches of name as well as key if column.name in self._index and column.key != column.name: other = self._index[column.name] if other.name == other.key: remove_col.add(other) if column.key in self._index: remove_col.add(self._index[column.key]) new_cols = [] replaced = False for k, col in self._collection: if col in remove_col: if not replaced: replaced = True new_cols.append((column.key, column)) else: new_cols.append((k, col)) if remove_col: self._colset.difference_update(remove_col) if not replaced: new_cols.append((column.key, column)) self._colset.add(column) self._collection[:] = new_cols self._index.clear() self._index.update( {idx: col for idx, (k, col) in enumerate(self._collection)} ) self._index.update(self._collection) class ImmutableColumnCollection(util.ImmutableContainer, ColumnCollection): __slots__ = ("_parent",) def __init__(self, collection): object.__setattr__(self, "_parent", collection) object.__setattr__(self, "_colset", collection._colset) object.__setattr__(self, "_index", collection._index) object.__setattr__(self, "_collection", collection._collection) def __getstate__(self): return {"_parent": self._parent} def __setstate__(self, state): parent = state["_parent"] self.__init__(parent) add = extend = remove = util.ImmutableContainer._immutable class ColumnSet(util.ordered_column_set): def contains_column(self, col): return col in self def extend(self, cols): for col in cols: self.add(col) def __add__(self, other): return list(self) + list(other) def __eq__(self, other): l = [] for c in other: for local in self: if c.shares_lineage(local): l.append(c == local) return elements.and_(*l) def __hash__(self): return hash(tuple(x for x in self)) def _bind_or_error(schemaitem, msg=None): util.warn_deprecated_20( "The ``bind`` argument for schema methods that invoke SQL " "against an engine or connection will be required in SQLAlchemy 2.0." ) bind = schemaitem.bind if not bind: name = schemaitem.__class__.__name__ label = getattr( schemaitem, "fullname", getattr(schemaitem, "name", None) ) if label: item = "%s object %r" % (name, label) else: item = "%s object" % name if msg is None: msg = ( "%s is not bound to an Engine or Connection. " "Execution can not proceed without a database to execute " "against." % item ) raise exc.UnboundExecutionError(msg) return bind def _entity_namespace(entity): """Return the nearest .entity_namespace for the given entity. If not immediately available, does an iterate to find a sub-element that has one, if any. """ try: return entity.entity_namespace except AttributeError: for elem in visitors.iterate(entity): if hasattr(elem, "entity_namespace"): return elem.entity_namespace else: raise def _entity_namespace_key(entity, key): """Return an entry from an entity_namespace. Raises :class:`_exc.InvalidRequestError` rather than attribute error on not found. """ try: ns = _entity_namespace(entity) return getattr(ns, key) except AttributeError as err: util.raise_( exc.InvalidRequestError( 'Entity namespace for "%s" has no property "%s"' % (entity, key) ), replace_context=err, )