OpenHome/venv/Lib/site-packages/sqlalchemy/sql/visitors.py

849 lines
27 KiB
Python
Raw Normal View History

2021-07-21 21:33:05 +02:00
# sql/visitors.py
# Copyright (C) 2005-2021 the SQLAlchemy authors and contributors
# <see AUTHORS file>
#
# This module is part of SQLAlchemy and is released under
# the MIT License: http://www.opensource.org/licenses/mit-license.php
"""Visitor/traversal interface and library functions.
SQLAlchemy schema and expression constructs rely on a Python-centric
version of the classic "visitor" pattern as the primary way in which
they apply functionality. The most common use of this pattern
is statement compilation, where individual expression classes match
up to rendering methods that produce a string result. Beyond this,
the visitor system is also used to inspect expressions for various
information and patterns, as well as for the purposes of applying
transformations to expressions.
Examples of how the visit system is used can be seen in the source code
of for example the ``sqlalchemy.sql.util`` and the ``sqlalchemy.sql.compiler``
modules. Some background on clause adaption is also at
http://techspot.zzzeek.org/2008/01/23/expression-transformations/ .
"""
from collections import deque
import itertools
import operator
from .. import exc
from .. import util
from ..util import langhelpers
from ..util import symbol
__all__ = [
"iterate",
"traverse_using",
"traverse",
"cloned_traverse",
"replacement_traverse",
"Traversible",
"TraversibleType",
"ExternalTraversal",
"InternalTraversal",
]
def _generate_compiler_dispatch(cls):
"""Generate a _compiler_dispatch() external traversal on classes with a
__visit_name__ attribute.
"""
visit_name = cls.__visit_name__
if "_compiler_dispatch" in cls.__dict__:
# class has a fixed _compiler_dispatch() method.
# copy it to "original" so that we can get it back if
# sqlalchemy.ext.compiles overrides it.
cls._original_compiler_dispatch = cls._compiler_dispatch
return
if not isinstance(visit_name, util.compat.string_types):
raise exc.InvalidRequestError(
"__visit_name__ on class %s must be a string at the class level"
% cls.__name__
)
name = "visit_%s" % visit_name
getter = operator.attrgetter(name)
def _compiler_dispatch(self, visitor, **kw):
"""Look for an attribute named "visit_<visit_name>" on the
visitor, and call it with the same kw params.
"""
try:
meth = getter(visitor)
except AttributeError as err:
return visitor.visit_unsupported_compilation(self, err, **kw)
else:
return meth(self, **kw)
cls._compiler_dispatch = (
cls._original_compiler_dispatch
) = _compiler_dispatch
class TraversibleType(type):
"""Metaclass which assigns dispatch attributes to various kinds of
"visitable" classes.
Attributes include:
* The ``_compiler_dispatch`` method, corresponding to ``__visit_name__``.
This is called "external traversal" because the caller of each visit()
method is responsible for sub-traversing the inner elements of each
object. This is appropriate for string compilers and other traversals
that need to call upon the inner elements in a specific pattern.
* internal traversal collections ``_children_traversal``,
``_cache_key_traversal``, ``_copy_internals_traversal``, generated from
an optional ``_traverse_internals`` collection of symbols which comes
from the :class:`.InternalTraversal` list of symbols. This is called
"internal traversal" MARKMARK
"""
def __init__(cls, clsname, bases, clsdict):
if clsname != "Traversible":
if "__visit_name__" in clsdict:
_generate_compiler_dispatch(cls)
super(TraversibleType, cls).__init__(clsname, bases, clsdict)
class Traversible(util.with_metaclass(TraversibleType)):
"""Base class for visitable objects, applies the
:class:`.visitors.TraversibleType` metaclass.
"""
@util.preload_module("sqlalchemy.sql.traversals")
def get_children(self, omit_attrs=(), **kw):
r"""Return immediate child :class:`.visitors.Traversible`
elements of this :class:`.visitors.Traversible`.
This is used for visit traversal.
\**kw may contain flags that change the collection that is
returned, for example to return a subset of items in order to
cut down on larger traversals, or to return child items from a
different context (such as schema-level collections instead of
clause-level).
"""
traversals = util.preloaded.sql_traversals
try:
traverse_internals = self._traverse_internals
except AttributeError:
# user-defined classes may not have a _traverse_internals
return []
dispatch = traversals._get_children.run_generated_dispatch
return itertools.chain.from_iterable(
meth(obj, **kw)
for attrname, obj, meth in dispatch(
self, traverse_internals, "_generated_get_children_traversal"
)
if attrname not in omit_attrs and obj is not None
)
class _InternalTraversalType(type):
def __init__(cls, clsname, bases, clsdict):
if cls.__name__ in ("InternalTraversal", "ExtendedInternalTraversal"):
lookup = {}
for key, sym in clsdict.items():
if key.startswith("dp_"):
visit_key = key.replace("dp_", "visit_")
sym_name = sym.name
assert sym_name not in lookup, sym_name
lookup[sym] = lookup[sym_name] = visit_key
if hasattr(cls, "_dispatch_lookup"):
lookup.update(cls._dispatch_lookup)
cls._dispatch_lookup = lookup
super(_InternalTraversalType, cls).__init__(clsname, bases, clsdict)
def _generate_dispatcher(visitor, internal_dispatch, method_name):
names = []
for attrname, visit_sym in internal_dispatch:
meth = visitor.dispatch(visit_sym)
if meth:
visit_name = ExtendedInternalTraversal._dispatch_lookup[visit_sym]
names.append((attrname, visit_name))
code = (
(" return [\n")
+ (
", \n".join(
" (%r, self.%s, visitor.%s)"
% (attrname, attrname, visit_name)
for attrname, visit_name in names
)
)
+ ("\n ]\n")
)
meth_text = ("def %s(self, visitor):\n" % method_name) + code + "\n"
# print(meth_text)
return langhelpers._exec_code_in_env(meth_text, {}, method_name)
class InternalTraversal(util.with_metaclass(_InternalTraversalType, object)):
r"""Defines visitor symbols used for internal traversal.
The :class:`.InternalTraversal` class is used in two ways. One is that
it can serve as the superclass for an object that implements the
various visit methods of the class. The other is that the symbols
themselves of :class:`.InternalTraversal` are used within
the ``_traverse_internals`` collection. Such as, the :class:`.Case`
object defines ``_traverse_internals`` as ::
_traverse_internals = [
("value", InternalTraversal.dp_clauseelement),
("whens", InternalTraversal.dp_clauseelement_tuples),
("else_", InternalTraversal.dp_clauseelement),
]
Above, the :class:`.Case` class indicates its internal state as the
attributes named ``value``, ``whens``, and ``else_``. They each
link to an :class:`.InternalTraversal` method which indicates the type
of datastructure referred towards.
Using the ``_traverse_internals`` structure, objects of type
:class:`.InternalTraversible` will have the following methods automatically
implemented:
* :meth:`.Traversible.get_children`
* :meth:`.Traversible._copy_internals`
* :meth:`.Traversible._gen_cache_key`
Subclasses can also implement these methods directly, particularly for the
:meth:`.Traversible._copy_internals` method, when special steps
are needed.
.. versionadded:: 1.4
"""
def dispatch(self, visit_symbol):
"""Given a method from :class:`.InternalTraversal`, return the
corresponding method on a subclass.
"""
name = self._dispatch_lookup[visit_symbol]
return getattr(self, name, None)
def run_generated_dispatch(
self, target, internal_dispatch, generate_dispatcher_name
):
try:
dispatcher = target.__class__.__dict__[generate_dispatcher_name]
except KeyError:
# most of the dispatchers are generated up front
# in sqlalchemy/sql/__init__.py ->
# traversals.py-> _preconfigure_traversals().
# this block will generate any remaining dispatchers.
dispatcher = self.generate_dispatch(
target.__class__, internal_dispatch, generate_dispatcher_name
)
return dispatcher(target, self)
def generate_dispatch(
self, target_cls, internal_dispatch, generate_dispatcher_name
):
dispatcher = _generate_dispatcher(
self, internal_dispatch, generate_dispatcher_name
)
# assert isinstance(target_cls, type)
setattr(target_cls, generate_dispatcher_name, dispatcher)
return dispatcher
dp_has_cache_key = symbol("HC")
"""Visit a :class:`.HasCacheKey` object."""
dp_has_cache_key_list = symbol("HL")
"""Visit a list of :class:`.HasCacheKey` objects."""
dp_clauseelement = symbol("CE")
"""Visit a :class:`_expression.ClauseElement` object."""
dp_fromclause_canonical_column_collection = symbol("FC")
"""Visit a :class:`_expression.FromClause` object in the context of the
``columns`` attribute.
The column collection is "canonical", meaning it is the originally
defined location of the :class:`.ColumnClause` objects. Right now
this means that the object being visited is a
:class:`_expression.TableClause`
or :class:`_schema.Table` object only.
"""
dp_clauseelement_tuples = symbol("CTS")
"""Visit a list of tuples which contain :class:`_expression.ClauseElement`
objects.
"""
dp_clauseelement_list = symbol("CL")
"""Visit a list of :class:`_expression.ClauseElement` objects.
"""
dp_clauseelement_tuple = symbol("CT")
"""Visit a tuple of :class:`_expression.ClauseElement` objects.
"""
dp_executable_options = symbol("EO")
dp_with_context_options = symbol("WC")
dp_fromclause_ordered_set = symbol("CO")
"""Visit an ordered set of :class:`_expression.FromClause` objects. """
dp_string = symbol("S")
"""Visit a plain string value.
Examples include table and column names, bound parameter keys, special
keywords such as "UNION", "UNION ALL".
The string value is considered to be significant for cache key
generation.
"""
dp_string_list = symbol("SL")
"""Visit a list of strings."""
dp_anon_name = symbol("AN")
"""Visit a potentially "anonymized" string value.
The string value is considered to be significant for cache key
generation.
"""
dp_boolean = symbol("B")
"""Visit a boolean value.
The boolean value is considered to be significant for cache key
generation.
"""
dp_operator = symbol("O")
"""Visit an operator.
The operator is a function from the :mod:`sqlalchemy.sql.operators`
module.
The operator value is considered to be significant for cache key
generation.
"""
dp_type = symbol("T")
"""Visit a :class:`.TypeEngine` object
The type object is considered to be significant for cache key
generation.
"""
dp_plain_dict = symbol("PD")
"""Visit a dictionary with string keys.
The keys of the dictionary should be strings, the values should
be immutable and hashable. The dictionary is considered to be
significant for cache key generation.
"""
dp_dialect_options = symbol("DO")
"""Visit a dialect options structure."""
dp_string_clauseelement_dict = symbol("CD")
"""Visit a dictionary of string keys to :class:`_expression.ClauseElement`
objects.
"""
dp_string_multi_dict = symbol("MD")
"""Visit a dictionary of string keys to values which may either be
plain immutable/hashable or :class:`.HasCacheKey` objects.
"""
dp_annotations_key = symbol("AK")
"""Visit the _annotations_cache_key element.
This is a dictionary of additional information about a ClauseElement
that modifies its role. It should be included when comparing or caching
objects, however generating this key is relatively expensive. Visitors
should check the "_annotations" dict for non-None first before creating
this key.
"""
dp_plain_obj = symbol("PO")
"""Visit a plain python object.
The value should be immutable and hashable, such as an integer.
The value is considered to be significant for cache key generation.
"""
dp_named_ddl_element = symbol("DD")
"""Visit a simple named DDL element.
The current object used by this method is the :class:`.Sequence`.
The object is only considered to be important for cache key generation
as far as its name, but not any other aspects of it.
"""
dp_prefix_sequence = symbol("PS")
"""Visit the sequence represented by :class:`_expression.HasPrefixes`
or :class:`_expression.HasSuffixes`.
"""
dp_table_hint_list = symbol("TH")
"""Visit the ``_hints`` collection of a :class:`_expression.Select`
object.
"""
dp_setup_join_tuple = symbol("SJ")
dp_memoized_select_entities = symbol("ME")
dp_statement_hint_list = symbol("SH")
"""Visit the ``_statement_hints`` collection of a
:class:`_expression.Select`
object.
"""
dp_unknown_structure = symbol("UK")
"""Visit an unknown structure.
"""
dp_dml_ordered_values = symbol("DML_OV")
"""Visit the values() ordered tuple list of an
:class:`_expression.Update` object."""
dp_dml_values = symbol("DML_V")
"""Visit the values() dictionary of a :class:`.ValuesBase`
(e.g. Insert or Update) object.
"""
dp_dml_multi_values = symbol("DML_MV")
"""Visit the values() multi-valued list of dictionaries of an
:class:`_expression.Insert` object.
"""
dp_propagate_attrs = symbol("PA")
"""Visit the propagate attrs dict. This hardcodes to the particular
elements we care about right now."""
class ExtendedInternalTraversal(InternalTraversal):
"""Defines additional symbols that are useful in caching applications.
Traversals for :class:`_expression.ClauseElement` objects only need to use
those symbols present in :class:`.InternalTraversal`. However, for
additional caching use cases within the ORM, symbols dealing with the
:class:`.HasCacheKey` class are added here.
"""
dp_ignore = symbol("IG")
"""Specify an object that should be ignored entirely.
This currently applies function call argument caching where some
arguments should not be considered to be part of a cache key.
"""
dp_inspectable = symbol("IS")
"""Visit an inspectable object where the return value is a
:class:`.HasCacheKey` object."""
dp_multi = symbol("M")
"""Visit an object that may be a :class:`.HasCacheKey` or may be a
plain hashable object."""
dp_multi_list = symbol("MT")
"""Visit a tuple containing elements that may be :class:`.HasCacheKey` or
may be a plain hashable object."""
dp_has_cache_key_tuples = symbol("HT")
"""Visit a list of tuples which contain :class:`.HasCacheKey`
objects.
"""
dp_inspectable_list = symbol("IL")
"""Visit a list of inspectable objects which upon inspection are
HasCacheKey objects."""
class ExternalTraversal(object):
"""Base class for visitor objects which can traverse externally using
the :func:`.visitors.traverse` function.
Direct usage of the :func:`.visitors.traverse` function is usually
preferred.
"""
__traverse_options__ = {}
def traverse_single(self, obj, **kw):
for v in self.visitor_iterator:
meth = getattr(v, "visit_%s" % obj.__visit_name__, None)
if meth:
return meth(obj, **kw)
def iterate(self, obj):
"""Traverse the given expression structure, returning an iterator
of all elements.
"""
return iterate(obj, self.__traverse_options__)
def traverse(self, obj):
"""Traverse and visit the given expression structure."""
return traverse(obj, self.__traverse_options__, self._visitor_dict)
@util.memoized_property
def _visitor_dict(self):
visitors = {}
for name in dir(self):
if name.startswith("visit_"):
visitors[name[6:]] = getattr(self, name)
return visitors
@property
def visitor_iterator(self):
"""Iterate through this visitor and each 'chained' visitor."""
v = self
while v:
yield v
v = getattr(v, "_next", None)
def chain(self, visitor):
"""'Chain' an additional ClauseVisitor onto this ClauseVisitor.
The chained visitor will receive all visit events after this one.
"""
tail = list(self.visitor_iterator)[-1]
tail._next = visitor
return self
class CloningExternalTraversal(ExternalTraversal):
"""Base class for visitor objects which can traverse using
the :func:`.visitors.cloned_traverse` function.
Direct usage of the :func:`.visitors.cloned_traverse` function is usually
preferred.
"""
def copy_and_process(self, list_):
"""Apply cloned traversal to the given list of elements, and return
the new list.
"""
return [self.traverse(x) for x in list_]
def traverse(self, obj):
"""Traverse and visit the given expression structure."""
return cloned_traverse(
obj, self.__traverse_options__, self._visitor_dict
)
class ReplacingExternalTraversal(CloningExternalTraversal):
"""Base class for visitor objects which can traverse using
the :func:`.visitors.replacement_traverse` function.
Direct usage of the :func:`.visitors.replacement_traverse` function is
usually preferred.
"""
def replace(self, elem):
"""Receive pre-copied elements during a cloning traversal.
If the method returns a new element, the element is used
instead of creating a simple copy of the element. Traversal
will halt on the newly returned element if it is re-encountered.
"""
return None
def traverse(self, obj):
"""Traverse and visit the given expression structure."""
def replace(elem):
for v in self.visitor_iterator:
e = v.replace(elem)
if e is not None:
return e
return replacement_traverse(obj, self.__traverse_options__, replace)
# backwards compatibility
Visitable = Traversible
VisitableType = TraversibleType
ClauseVisitor = ExternalTraversal
CloningVisitor = CloningExternalTraversal
ReplacingCloningVisitor = ReplacingExternalTraversal
def iterate(obj, opts=util.immutabledict()):
r"""Traverse the given expression structure, returning an iterator.
Traversal is configured to be breadth-first.
The central API feature used by the :func:`.visitors.iterate`
function is the
:meth:`_expression.ClauseElement.get_children` method of
:class:`_expression.ClauseElement` objects. This method should return all
the :class:`_expression.ClauseElement` objects which are associated with a
particular :class:`_expression.ClauseElement` object. For example, a
:class:`.Case` structure will refer to a series of
:class:`_expression.ColumnElement` objects within its "whens" and "else\_"
member variables.
:param obj: :class:`_expression.ClauseElement` structure to be traversed
:param opts: dictionary of iteration options. This dictionary is usually
empty in modern usage.
"""
yield obj
children = obj.get_children(**opts)
if not children:
return
stack = deque([children])
while stack:
t_iterator = stack.popleft()
for t in t_iterator:
yield t
stack.append(t.get_children(**opts))
def traverse_using(iterator, obj, visitors):
"""Visit the given expression structure using the given iterator of
objects.
:func:`.visitors.traverse_using` is usually called internally as the result
of the :func:`.visitors.traverse` function.
:param iterator: an iterable or sequence which will yield
:class:`_expression.ClauseElement`
structures; the iterator is assumed to be the
product of the :func:`.visitors.iterate` function.
:param obj: the :class:`_expression.ClauseElement`
that was used as the target of the
:func:`.iterate` function.
:param visitors: dictionary of visit functions. See :func:`.traverse`
for details on this dictionary.
.. seealso::
:func:`.traverse`
"""
for target in iterator:
meth = visitors.get(target.__visit_name__, None)
if meth:
meth(target)
return obj
def traverse(obj, opts, visitors):
"""Traverse and visit the given expression structure using the default
iterator.
e.g.::
from sqlalchemy.sql import visitors
stmt = select(some_table).where(some_table.c.foo == 'bar')
def visit_bindparam(bind_param):
print("found bound value: %s" % bind_param.value)
visitors.traverse(stmt, {}, {"bindparam": visit_bindparam})
The iteration of objects uses the :func:`.visitors.iterate` function,
which does a breadth-first traversal using a stack.
:param obj: :class:`_expression.ClauseElement` structure to be traversed
:param opts: dictionary of iteration options. This dictionary is usually
empty in modern usage.
:param visitors: dictionary of visit functions. The dictionary should
have strings as keys, each of which would correspond to the
``__visit_name__`` of a particular kind of SQL expression object, and
callable functions as values, each of which represents a visitor function
for that kind of object.
"""
return traverse_using(iterate(obj, opts), obj, visitors)
def cloned_traverse(obj, opts, visitors):
"""Clone the given expression structure, allowing modifications by
visitors.
Traversal usage is the same as that of :func:`.visitors.traverse`.
The visitor functions present in the ``visitors`` dictionary may also
modify the internals of the given structure as the traversal proceeds.
The central API feature used by the :func:`.visitors.cloned_traverse`
and :func:`.visitors.replacement_traverse` functions, in addition to the
:meth:`_expression.ClauseElement.get_children`
function that is used to achieve
the iteration, is the :meth:`_expression.ClauseElement._copy_internals`
method.
For a :class:`_expression.ClauseElement`
structure to support cloning and replacement
traversals correctly, it needs to be able to pass a cloning function into
its internal members in order to make copies of them.
.. seealso::
:func:`.visitors.traverse`
:func:`.visitors.replacement_traverse`
"""
cloned = {}
stop_on = set(opts.get("stop_on", []))
def deferred_copy_internals(obj):
return cloned_traverse(obj, opts, visitors)
def clone(elem, **kw):
if elem in stop_on:
return elem
else:
if id(elem) not in cloned:
if "replace" in kw:
newelem = kw["replace"](elem)
if newelem is not None:
cloned[id(elem)] = newelem
return newelem
cloned[id(elem)] = newelem = elem._clone(**kw)
newelem._copy_internals(clone=clone, **kw)
meth = visitors.get(newelem.__visit_name__, None)
if meth:
meth(newelem)
return cloned[id(elem)]
if obj is not None:
obj = clone(
obj, deferred_copy_internals=deferred_copy_internals, **opts
)
clone = None # remove gc cycles
return obj
def replacement_traverse(obj, opts, replace):
"""Clone the given expression structure, allowing element
replacement by a given replacement function.
This function is very similar to the :func:`.visitors.cloned_traverse`
function, except instead of being passed a dictionary of visitors, all
elements are unconditionally passed into the given replace function.
The replace function then has the option to return an entirely new object
which will replace the one given. If it returns ``None``, then the object
is kept in place.
The difference in usage between :func:`.visitors.cloned_traverse` and
:func:`.visitors.replacement_traverse` is that in the former case, an
already-cloned object is passed to the visitor function, and the visitor
function can then manipulate the internal state of the object.
In the case of the latter, the visitor function should only return an
entirely different object, or do nothing.
The use case for :func:`.visitors.replacement_traverse` is that of
replacing a FROM clause inside of a SQL structure with a different one,
as is a common use case within the ORM.
"""
cloned = {}
stop_on = {id(x) for x in opts.get("stop_on", [])}
def deferred_copy_internals(obj):
return replacement_traverse(obj, opts, replace)
def clone(elem, **kw):
if (
id(elem) in stop_on
or "no_replacement_traverse" in elem._annotations
):
return elem
else:
newelem = replace(elem)
if newelem is not None:
stop_on.add(id(newelem))
return newelem
else:
# base "already seen" on id(), not hash, so that we don't
# replace an Annotated element with its non-annotated one, and
# vice versa
id_elem = id(elem)
if id_elem not in cloned:
if "replace" in kw:
newelem = kw["replace"](elem)
if newelem is not None:
cloned[id_elem] = newelem
return newelem
cloned[id_elem] = newelem = elem._clone(**kw)
newelem._copy_internals(clone=clone, **kw)
return cloned[id_elem]
if obj is not None:
obj = clone(
obj, deferred_copy_internals=deferred_copy_internals, **opts
)
clone = None # remove gc cycles
return obj