OpenHome/venv/Lib/site-packages/sqlalchemy/dialects/postgresql/array.py

394 lines
12 KiB
Python
Raw Normal View History

2021-07-21 21:33:05 +02:00
# postgresql/array.py
# Copyright (C) 2005-2021 the SQLAlchemy authors and contributors
# <see AUTHORS file>
#
# This module is part of SQLAlchemy and is released under
# the MIT License: http://www.opensource.org/licenses/mit-license.php
import re
from ... import types as sqltypes
from ... import util
from ...sql import coercions
from ...sql import expression
from ...sql import operators
from ...sql import roles
def Any(other, arrexpr, operator=operators.eq):
"""A synonym for the :meth:`.ARRAY.Comparator.any` method.
This method is legacy and is here for backwards-compatibility.
.. seealso::
:func:`_expression.any_`
"""
return arrexpr.any(other, operator)
def All(other, arrexpr, operator=operators.eq):
"""A synonym for the :meth:`.ARRAY.Comparator.all` method.
This method is legacy and is here for backwards-compatibility.
.. seealso::
:func:`_expression.all_`
"""
return arrexpr.all(other, operator)
class array(expression.ClauseList, expression.ColumnElement):
"""A PostgreSQL ARRAY literal.
This is used to produce ARRAY literals in SQL expressions, e.g.::
from sqlalchemy.dialects.postgresql import array
from sqlalchemy.dialects import postgresql
from sqlalchemy import select, func
stmt = select(array([1,2]) + array([3,4,5]))
print(stmt.compile(dialect=postgresql.dialect()))
Produces the SQL::
SELECT ARRAY[%(param_1)s, %(param_2)s] ||
ARRAY[%(param_3)s, %(param_4)s, %(param_5)s]) AS anon_1
An instance of :class:`.array` will always have the datatype
:class:`_types.ARRAY`. The "inner" type of the array is inferred from
the values present, unless the ``type_`` keyword argument is passed::
array(['foo', 'bar'], type_=CHAR)
Multidimensional arrays are produced by nesting :class:`.array` constructs.
The dimensionality of the final :class:`_types.ARRAY`
type is calculated by
recursively adding the dimensions of the inner :class:`_types.ARRAY`
type::
stmt = select(
array([
array([1, 2]), array([3, 4]), array([column('q'), column('x')])
])
)
print(stmt.compile(dialect=postgresql.dialect()))
Produces::
SELECT ARRAY[ARRAY[%(param_1)s, %(param_2)s],
ARRAY[%(param_3)s, %(param_4)s], ARRAY[q, x]] AS anon_1
.. versionadded:: 1.3.6 added support for multidimensional array literals
.. seealso::
:class:`_postgresql.ARRAY`
"""
__visit_name__ = "array"
stringify_dialect = "postgresql"
def __init__(self, clauses, **kw):
clauses = [
coercions.expect(roles.ExpressionElementRole, c) for c in clauses
]
super(array, self).__init__(*clauses, **kw)
self._type_tuple = [arg.type for arg in clauses]
main_type = kw.pop(
"type_",
self._type_tuple[0] if self._type_tuple else sqltypes.NULLTYPE,
)
if isinstance(main_type, ARRAY):
self.type = ARRAY(
main_type.item_type,
dimensions=main_type.dimensions + 1
if main_type.dimensions is not None
else 2,
)
else:
self.type = ARRAY(main_type)
@property
def _select_iterable(self):
return (self,)
def _bind_param(self, operator, obj, _assume_scalar=False, type_=None):
if _assume_scalar or operator is operators.getitem:
return expression.BindParameter(
None,
obj,
_compared_to_operator=operator,
type_=type_,
_compared_to_type=self.type,
unique=True,
)
else:
return array(
[
self._bind_param(
operator, o, _assume_scalar=True, type_=type_
)
for o in obj
]
)
def self_group(self, against=None):
if against in (operators.any_op, operators.all_op, operators.getitem):
return expression.Grouping(self)
else:
return self
CONTAINS = operators.custom_op("@>", precedence=5)
CONTAINED_BY = operators.custom_op("<@", precedence=5)
OVERLAP = operators.custom_op("&&", precedence=5)
class ARRAY(sqltypes.ARRAY):
"""PostgreSQL ARRAY type.
.. versionchanged:: 1.1 The :class:`_postgresql.ARRAY` type is now
a subclass of the core :class:`_types.ARRAY` type.
The :class:`_postgresql.ARRAY` type is constructed in the same way
as the core :class:`_types.ARRAY` type; a member type is required, and a
number of dimensions is recommended if the type is to be used for more
than one dimension::
from sqlalchemy.dialects import postgresql
mytable = Table("mytable", metadata,
Column("data", postgresql.ARRAY(Integer, dimensions=2))
)
The :class:`_postgresql.ARRAY` type provides all operations defined on the
core :class:`_types.ARRAY` type, including support for "dimensions",
indexed access, and simple matching such as
:meth:`.types.ARRAY.Comparator.any` and
:meth:`.types.ARRAY.Comparator.all`. :class:`_postgresql.ARRAY`
class also
provides PostgreSQL-specific methods for containment operations, including
:meth:`.postgresql.ARRAY.Comparator.contains`
:meth:`.postgresql.ARRAY.Comparator.contained_by`, and
:meth:`.postgresql.ARRAY.Comparator.overlap`, e.g.::
mytable.c.data.contains([1, 2])
The :class:`_postgresql.ARRAY` type may not be supported on all
PostgreSQL DBAPIs; it is currently known to work on psycopg2 only.
Additionally, the :class:`_postgresql.ARRAY`
type does not work directly in
conjunction with the :class:`.ENUM` type. For a workaround, see the
special type at :ref:`postgresql_array_of_enum`.
.. seealso::
:class:`_types.ARRAY` - base array type
:class:`_postgresql.array` - produces a literal array value.
"""
class Comparator(sqltypes.ARRAY.Comparator):
"""Define comparison operations for :class:`_types.ARRAY`.
Note that these operations are in addition to those provided
by the base :class:`.types.ARRAY.Comparator` class, including
:meth:`.types.ARRAY.Comparator.any` and
:meth:`.types.ARRAY.Comparator.all`.
"""
def contains(self, other, **kwargs):
"""Boolean expression. Test if elements are a superset of the
elements of the argument array expression.
"""
return self.operate(CONTAINS, other, result_type=sqltypes.Boolean)
def contained_by(self, other):
"""Boolean expression. Test if elements are a proper subset of the
elements of the argument array expression.
"""
return self.operate(
CONTAINED_BY, other, result_type=sqltypes.Boolean
)
def overlap(self, other):
"""Boolean expression. Test if array has elements in common with
an argument array expression.
"""
return self.operate(OVERLAP, other, result_type=sqltypes.Boolean)
comparator_factory = Comparator
def __init__(
self, item_type, as_tuple=False, dimensions=None, zero_indexes=False
):
"""Construct an ARRAY.
E.g.::
Column('myarray', ARRAY(Integer))
Arguments are:
:param item_type: The data type of items of this array. Note that
dimensionality is irrelevant here, so multi-dimensional arrays like
``INTEGER[][]``, are constructed as ``ARRAY(Integer)``, not as
``ARRAY(ARRAY(Integer))`` or such.
:param as_tuple=False: Specify whether return results
should be converted to tuples from lists. DBAPIs such
as psycopg2 return lists by default. When tuples are
returned, the results are hashable.
:param dimensions: if non-None, the ARRAY will assume a fixed
number of dimensions. This will cause the DDL emitted for this
ARRAY to include the exact number of bracket clauses ``[]``,
and will also optimize the performance of the type overall.
Note that PG arrays are always implicitly "non-dimensioned",
meaning they can store any number of dimensions no matter how
they were declared.
:param zero_indexes=False: when True, index values will be converted
between Python zero-based and PostgreSQL one-based indexes, e.g.
a value of one will be added to all index values before passing
to the database.
.. versionadded:: 0.9.5
"""
if isinstance(item_type, ARRAY):
raise ValueError(
"Do not nest ARRAY types; ARRAY(basetype) "
"handles multi-dimensional arrays of basetype"
)
if isinstance(item_type, type):
item_type = item_type()
self.item_type = item_type
self.as_tuple = as_tuple
self.dimensions = dimensions
self.zero_indexes = zero_indexes
@property
def hashable(self):
return self.as_tuple
@property
def python_type(self):
return list
def compare_values(self, x, y):
return x == y
def _proc_array(self, arr, itemproc, dim, collection):
if dim is None:
arr = list(arr)
if (
dim == 1
or dim is None
and (
# this has to be (list, tuple), or at least
# not hasattr('__iter__'), since Py3K strings
# etc. have __iter__
not arr
or not isinstance(arr[0], (list, tuple))
)
):
if itemproc:
return collection(itemproc(x) for x in arr)
else:
return collection(arr)
else:
return collection(
self._proc_array(
x,
itemproc,
dim - 1 if dim is not None else None,
collection,
)
for x in arr
)
@util.memoized_property
def _against_native_enum(self):
return (
isinstance(self.item_type, sqltypes.Enum)
and self.item_type.native_enum
)
def bind_expression(self, bindvalue):
return bindvalue
def bind_processor(self, dialect):
item_proc = self.item_type.dialect_impl(dialect).bind_processor(
dialect
)
def process(value):
if value is None:
return value
else:
return self._proc_array(
value, item_proc, self.dimensions, list
)
return process
def result_processor(self, dialect, coltype):
item_proc = self.item_type.dialect_impl(dialect).result_processor(
dialect, coltype
)
def process(value):
if value is None:
return value
else:
return self._proc_array(
value,
item_proc,
self.dimensions,
tuple if self.as_tuple else list,
)
if self._against_native_enum:
super_rp = process
def handle_raw_string(value):
inner = re.match(r"^{(.*)}$", value).group(1)
return inner.split(",") if inner else []
def process(value):
if value is None:
return value
# isinstance(value, util.string_types) is required to handle
# the # case where a TypeDecorator for and Array of Enum is
# used like was required in sa < 1.3.17
return super_rp(
handle_raw_string(value)
if isinstance(value, util.string_types)
else value
)
return process